• Title/Summary/Keyword: Titania (Titanium dioxide, $TiO_2$)

Search Result 23, Processing Time 0.015 seconds

Anion co-doped Titania for Solar Photocatalytic Degradation of Dyes

  • Lee, Young-Seak;Kim, Sang-Jin;Venkateswaran, P.;Jang, Jeen-Seok;Kim, Hyuk;Kim, Jong-Gyu
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • In order to investigate the effect of doping C, N, B and F elements on $TiO_2$ for reducing the band gap, the heat treatment of $TiO_2$ was carried out with tetraethylammonium tetrafluoroborate. Through XRD and XPS analysis, the C, N, B and F doped anatase $TiO_2$ was confirmed. According to the increase of temperature during treatment, the particle size was increased due to aggregation of $TiO_2$ with elements (B, C, N and F). To investigate the capacity of photocatalyst for degradation of dye under solar light, the degradation of acridine orange and methylene blue was conducted. The degradation of dyes was carried out successfully under solar light indicating the effect of doping elements (B, C, N and F) on $TiO_2$ for reducing the band gap effectively.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF