• 제목/요약/키워드: Titan:atmosphere

검색결과 5건 처리시간 0.02초

Near-IR Radiative Transfer Process for the Hazy Atmosphere of Titan

  • Kim, Sang-Joon
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.44.2-44.2
    • /
    • 2015
  • Radiative transfer programs have been developed to simulate near-IR spectra of Titan. The formalism of the radiative transfer calculations includes the absorption and emission lines of $CH_4$, $C_2H_2$, $C_2H_6$, and HCN, and continua produced by Titanian haze particles. Absorption and scattering of sunlight by haze particles are considered by employing a two-stream approximation and a spherical-shell model for the atmospheric layers of Titan. Various constraints on the radiative transfer calculations for generating synthetic spectra will be discussed and presented. Several examples of comparisons between the synthetic spectra and recent spectral observations of Titan will also be presented.

  • PDF

Near-IR Spectral Features of Haze Particles in the Atmosphere of Titan

  • 김상준
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • The Cassini/Visual Infrared Mapping Spectrometer (VIMS) observed the sun through the atmosphere of Titan, and provided vertically-resolved 63 spectra from 49 km to 987 km for the 1 - 5 micron range (Bellucci, 2008). Bellucci et al. (2009) analyzed selected spectral ranges where the band absorptions of $CH_4$ and CO are strong by constructing synthetic spectra including $CH_4$ and CO lines, but without including haze absorptions in their synthetic spectra. Kim et al. (2011) and Sim et al. (2013) were able to extract detailed spectral features of fundamental (Dv = 1) and overtone (Dv = 2) bands of the haze from the VIMS spectra by excluding the adjacent influences of strong $CH_4$ absorptions using a radiative transfer program, which includes effects of absorption and emission of lines of these molecules, and absorption and scattering of haze particles. In this presentation, we extend our detailed analyses to other remaining wavelengths in order to provide the spectral characteristics of the Titanian haze for the entire 1 - 5 micron range and to identify any additional haze spectral features and an unidentified feature near 4.3 microns reported by Bellucci et al. (2009).

  • PDF

VERTICAL PROPERTIES OF THE GLOBAL HAZE ON TITAN DEDUCED FROM METHANE BAND SPECTROSCOPY BETWEEN 7100 AND 9200Å

  • Sim, Chae-Kyung;Kim, Sang-Joon;Kim, Joo-Hyeon;Seo, Haing-Ja;Jung, Ae-Ran;Kim, Ji-Hyun
    • 천문학회지
    • /
    • 제41권3호
    • /
    • pp.65-76
    • /
    • 2008
  • We have investigated the optical properties of the global haze on Titan from spectra recorded between 7100 and $9200{\AA}$, where $CH_4$ absorption bands of various intensities occur. The Titan spectra were obtained on Feb. 23, 2005 (UT), near the times of the Cassini T3 flyby and Huygens probe, using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory in Korea. In order to derive the optical properties of the haze as a function of altitude, we developed an inversion radiative-transfer program using an atmospheric model of Titan and laboratory $CH_4$ absorption coefficients available from the literature. The derived extinction coefficients of the haze increase toward the surface, and the coefficients at shorter wavelengths are greater than those at longer wavelengths for the 30 - 120 km altitude range, indicating that the Titanian haze becomes optically thin toward the longer wavelength range. Total optical depths of the haze are estimated to be 1.4 and 1.2 for the 7270 - $7360{\AA}$ and 8940 - $9150{\AA}$ ranges, respectively. Based on the Huygens/DISR data set, Tomasko et al. (2005) reported total optical depths of 2.5 - 3.5 at $8290{\AA}$, depending on the assumed fractal aggregate particle model. The total optical depths based on our results are smaller than those of Tomasko et al., but they partially overlap with their results if we consider a large uncertainty from possible variations of the $CH_4$ mixing ratio over Titan's disk. We also derived the single scattering albedo of the haze particles as a function of altitude: it is less than 0.5 at altitudes higher than ${\sim}150\;km$, and approaches 1.0 toward the surface. This behavior suggests that, at altitudes above ${\sim}150\;km$, the average particle radius is smaller than the wavelengths, whereas near the surface, it becomes comparable or greater.

Numerical Analysis on Separation Dynamics of Strap-On Boosters in the Dense Atmosphere

  • Choi, Seongjin;Ko, Soon-Heum;Kim, Chongam;Rho, Oh-Hyun;Park, Jeong-joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.1-18
    • /
    • 2001
  • A numerical technique for simulating the separation dynamics of strap-on boosters jettisoned in the dense atmosphere is presented. Six degree of freedom rigid body equations of motion are integrated into the three-dimensional unsteady Navier-Stokes solution procedure to determine the dynamic motions of strap-ons. An automated Chimera overlaid grid technique is introduced to achieve maximum efficiency for multi-body dynamic motion and a domain division technique is implemented in order to reduce the computational cost required to find interpolation points in the Chimera grids. The flow solver is validated by comparing the computed results around the Titan IV launch vehicle with experimental data. The complete analysis process is then applied to the. H-II launch vehicle, the central rocket in japans space program, the CZ-3C launch vehicle developed in China and the KSR-III, a three-stage sounding rocket being developed in Korea. From the analyses, separation trajectories of strap-on boosters are predicted and aerodynamic characteristics around the vehicles at every time interval are examined. In addition, separation-impulse devices generally introduced for safe separation of strap-ons are properly modeled in the present paper and the jettisoning force requirements are examined quantitatively.

  • PDF