DOI QR코드

DOI QR Code

VERTICAL PROPERTIES OF THE GLOBAL HAZE ON TITAN DEDUCED FROM METHANE BAND SPECTROSCOPY BETWEEN 7100 AND 9200Å

  • Sim, Chae-Kyung (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, Sang-Joon (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, Joo-Hyeon (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Seo, Haing-Ja (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Jung, Ae-Ran (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Kim, Ji-Hyun (Department of Astronomy, Boston University)
  • Published : 2008.06.30

Abstract

We have investigated the optical properties of the global haze on Titan from spectra recorded between 7100 and $9200{\AA}$, where $CH_4$ absorption bands of various intensities occur. The Titan spectra were obtained on Feb. 23, 2005 (UT), near the times of the Cassini T3 flyby and Huygens probe, using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory in Korea. In order to derive the optical properties of the haze as a function of altitude, we developed an inversion radiative-transfer program using an atmospheric model of Titan and laboratory $CH_4$ absorption coefficients available from the literature. The derived extinction coefficients of the haze increase toward the surface, and the coefficients at shorter wavelengths are greater than those at longer wavelengths for the 30 - 120 km altitude range, indicating that the Titanian haze becomes optically thin toward the longer wavelength range. Total optical depths of the haze are estimated to be 1.4 and 1.2 for the 7270 - $7360{\AA}$ and 8940 - $9150{\AA}$ ranges, respectively. Based on the Huygens/DISR data set, Tomasko et al. (2005) reported total optical depths of 2.5 - 3.5 at $8290{\AA}$, depending on the assumed fractal aggregate particle model. The total optical depths based on our results are smaller than those of Tomasko et al., but they partially overlap with their results if we consider a large uncertainty from possible variations of the $CH_4$ mixing ratio over Titan's disk. We also derived the single scattering albedo of the haze particles as a function of altitude: it is less than 0.5 at altitudes higher than ${\sim}150\;km$, and approaches 1.0 toward the surface. This behavior suggests that, at altitudes above ${\sim}150\;km$, the average particle radius is smaller than the wavelengths, whereas near the surface, it becomes comparable or greater.

Keywords

References

  1. Anderson, C. M., Chanover, N. J., McKay, C. P., Rannou, P., Glenar, D. A., & Hillman, J. J., 2004, Titan's haze structure in 1999 from spatially-resolved narrowband imaging surrounding the 0.94$\mu$m methane window, Geophys. Res. Lett., 31, L17S06
  2. Banfield, D., Conrath, B. J., Gierasch, P. J., & Nicholson, P. D., 1998, Near-IR Spectrophotometry of Jovian Aerosols-Meridional and Vertical Distributions, Icarus, 134, 11 https://doi.org/10.1006/icar.1998.5942
  3. Boraas, K., Lin, Z., & Reilly, J. P., 1994, High resolution study of methane's $3v_1+v_3$ vibrational overtone band, J. Chem. Phys., 100,7916 https://doi.org/10.1063/1.466837
  4. Bowles, N., Barnett, J .J., Smith, K., Williams, G., & Calcutt, S., 2006, Visible and Near-infrared Spectroscopy (0.6 to $1.1{\mu}m$) of Methane Gas to Support Remote Sensing of Outer Planet Atmospheres. 38th DPS Meeting, #62.15, Bull. Amer. Astron. Soc., 38, 608
  5. Chamberlain, J. W. & Hunten, D., 1987, Theory of Planetary Atmospheres, An Introduction to Their Physics and Chemistry, New York: Academic
  6. Conrath, B. J., 1972, Vertical Resolution of Temperature Profiles Obtained from Remote Radiation Measurements, J. Atm. Sci., 29, 1262 https://doi.org/10.1175/1520-0469(1972)029<1262:VROTPO>2.0.CO;2
  7. Coustenis, A., Lellouch, E., Maillard, J. P., & McKay, C. P., 1995, Titan's Surface: Composition and Variability from the Near-Infrared Albedo, Icarus, 118, 87 https://doi.org/10.1006/icar.1995.1179
  8. Flasar, F. M., Samuelson, R. E., & Conrath, B. J., 1981, Titan's atmosphere: temperature and dynamics, Nature, 292, 693 https://doi.org/10.1038/292693a0
  9. Freeman, D. E., Yoshino, K., Esmond, J. R., & Parkinson, W. H., 1984, High resolution absorption cross section measurements of $SO_2$ at 213 K in the wavelength region 172-240 nm, Planet. Space Sci., 32, 1125 https://doi.org/10.1016/0032-0633(84)90139-9
  10. Fulchignoni, M.,et al., 2005, In situ measurements of the physical characteristics of Titan's environment, Nature, 438, 785 https://doi.org/10.1038/nature04314
  11. Gendron, E., et al., 2005, On an ESO website: http://www.eso.org/outreach/press- rel/pr2005/phot-04-05.html#note1
  12. Giver, L. P., 1978, Intensity measurements of the $CH_4$ bands in the region $4350\AA\;to\;10,600\AA$, J. Quant. Spectrosc. Radiat. Trans, 19, 311 https://doi.org/10.1016/0022-4073(78)90064-X
  13. Griffith, C. A., Owen, T., & Wagener, R., 1991, Titan's Surface and Troposphere, Investigated with Ground-Based, Near-Infrared Observations, Icarus, 93, 362 https://doi.org/10.1016/0019-1035(91)90219-J
  14. Griffith, C. A., Owen, T., Miller, G. A., & Geballe, T., 1998, Transient clouds in Titan's lower atmosphere, Nature, 395, 575 https://doi.org/10.1038/26920
  15. Griffith, C.A ., Owen, T., Geballe, T. R., Rayner, J., & Rannou, P., 2003, Evidence for the Exposure of Water Ice on Titan's Surface, Science, 300, 628 https://doi.org/10.1126/science.1081897
  16. Hall, J. C., Fulton, E. E., Huenemoerder, D. P., Welty, A. D., & Neff, J. E., 1994, The reduction of fiberfed echelle spectrograph data: Methods and an IDL-based solution procedure, Astron. Soc. Pacific, 106, 315 https://doi.org/10.1086/133381
  17. Harri, A.-M., Makinen. T., Lehto, A., Kahanpaa, H., & Siili, T., 2006, Vertical pressure profile of Titanobservations of the PPI/HASI instrument, Planet. Space Sci., 54, 1117 https://doi.org/10.1016/j.pss.2006.05.037
  18. Hinkle, K., Wallace, L., Livingston, W., Ayres, T., Harmer, D., & Valenti, V., 2003, High Resolution Infrared, Visible, and Ultraviolet Spectral Atlases of the Sun and Arcturus. Proceedings of 12th Cambridge Workshop on Cool Stars, Stellar Systems, & The Sun, 2003 University of Colorado, 851
  19. Hirtzig, M., Coustenis, A., Lai, O., Emsellem, E., Pecontal-Rousset, A., Rannou, P., Negrao, A., & Schmitt, B., 2005, Near-infrared study of Titan's resolved disk in spectro-imaging with CFHT/OASIS, Planet. Space Sci, 53, 535 https://doi.org/10.1016/j.pss.2004.08.006
  20. Karkoschka, E., 1994, Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum, Icarus, 111, 174 https://doi.org/10.1006/icar.1994.1139
  21. Karkoschka, E., 1998, Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD-Spectrophotometry, Icarus, 133, 134 https://doi.org/10.1006/icar.1998.5913
  22. Kim, S. J., Brown, M., & Spinrad, H., 1997, High-resolution spectroscopy of the A-X and B-X systems of CH in comets, J. Geomagnet. Geoelectr, 49, 132
  23. Kim, S. J., Geballe, T. R., & Noll, K.,S., 2000, NOTE: Three-Micrometer $CH_4$ Line Emission from Titan's High-Altitude Atmosphere, Icarus 147, 588 https://doi.org/10.1006/icar.2000.6481
  24. Kim, S. J., Geballe, T. R., Noll, K. S., & Courtin, R., 2005, Clouds, haze, and $CH_4,\;CH_3D,\;HCN,\;and\;C_2H_2$ in the atmosphere of Titan probed via $3{\mu}m$ spectroscopy, Icarus, 173, 522 https://doi.org/10.1016/j.icarus.2004.09.006
  25. Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., Eshelman, V. R., & Tyler, G. L., 1983, The atmosphere of Titan: An analysis of the Voyager 1 radio-occultation measurements, Icarus, 53, 348 https://doi.org/10.1016/0019-1035(83)90155-0
  26. Lorenz, R. D., Lemmon, M. T., Smith, P. H., & Lock-wood, G. W., 1999, Seasonal change on Titan observed with the Hubble Space Telescope WFPC-2, Icarus, 142, 391 https://doi.org/10.1006/icar.1999.6225
  27. Lutz, B. L. & Ramsay, D. A., 1972, New observations on the Kuiper bands of Uranus, Astrophys. J., 176, 521 https://doi.org/10.1086/151654
  28. Lutz, B. L., Owen, T., & Cess, R. D., 1976, Laboratory band strengths of methane and their application to the atmospheres of Jupiter, Saturn, Uranus, Neptune, and Titan, Astrophys. J., 203, 541 https://doi.org/10.1086/154110
  29. McCord, T. B., the Cassini VIMS Team, et al., 2006, Composition of Titan's surface from Cassini VIMS, Planet. Space Sci., 54, 1524 https://doi.org/10.1016/j.pss.2006.06.007
  30. McKay, C. P., Pollack, J.B ., & Courtin, R., 1989, The Thermal Structure of Titan's Atmosphere, Icarus, 80, 23 https://doi.org/10.1016/0019-1035(89)90160-7
  31. Neff, J. S., Humm, D. C., Bergstralh, J. T., Cochran, A. L., Cochran, W. D., Barker, E. S., & Tull, R. G., 1984, Absolute Spectrophotometry of Titan, Uranus, and Neptune: 3500-$10,500\AA$, Icarus, 60, 221 https://doi.org/10.1016/0019-1035(84)90186-6
  32. Negrao, A., Coustenis, A., Lellouch, E., Maillard, J.-P., Rannou, P., Schmitt, B., McKay, C. P., & Boudon, V., 2006, Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra, Planet. Space Sci., 54, 1225 https://doi.org/10.1016/j.pss.2006.05.031
  33. Niemann, H. B., et al., 2005, The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe, Nature, 438, 779 https://doi.org/10.1038/nature04122
  34. O'Brien, J. J. & Cao, H., 2002, Absorption spectra and absorption coefficients for methane in the 750-940nm region obtained by intracavity laser spectroscopy, J. Quant. Spectrosc. Rad. Transf, 75, 323 https://doi.org/10.1016/S0022-4073(02)00015-8
  35. Ohring, G., 1973, The Temperature and Ammonia Profiles in the Jovian Atmospheres from Inversion of the Jovian Emission Spectrum, Astrophys. J., 184, 1027 https://doi.org/10.1086/152390
  36. Orton, G. S., 1977, Recovery of the mean Jovian temperature structure from inversion of spectrally resolved thermal radiance data, Icarus, 32, 41 https://doi.org/10.1016/0019-1035(77)90048-3
  37. Paulo, P. F., Griffith, C., & the Cassini VIMS team, 2006, Constraints on the variability of the tropospheric methane abundance on Titan from Cassini VIMS observations, 38th DPS Meeting, #27.16, Bull. Amer. Astron. Soc., 38, 530
  38. Rages, K., & Pollack, J. B., 1983, Vertical Distribution of Scattering Hazes in Titan's Upper Atmosphere, Icarus, 55, 50 https://doi.org/10.1016/0019-1035(83)90049-0
  39. Rannou, P., Cabane, M., Chassefiere, E., Botet, R., McKay, C. P., & Courtin, R., 1995, Titan's geometric albedo: Role of the fractal structure of the aerosols, Icarus, 118, 355 https://doi.org/10.1006/icar.1995.1196
  40. Rodriguez, S., Le Mouelic, S., Satin, C., Clenet, H., Clark, R. N., Buratti, B., Brown, R. H., McCord, T. B., Nicholson, P. D., Baines, K. H., & the VIMS Science Team, 2006, Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan, Planet. Space Sci., 54, 1510 https://doi.org/10.1016/j.pss.2006.06.016
  41. Scherer, G. J., Lehmann, K. K., & Klemperer, W., 1984, The high-resolution visible overtone spectrum of $CH_4\;and\;CD_3H$ at 77 K, J. Chem. Phys., 81, 5319 https://doi.org/10.1063/1.447674
  42. Skoda, P. & Hensberge, H., 2003, Merging of Spectral Orders from Fiber Echelle Spectrographs, ASP Conference Series, 295, 415
  43. Singh, K. & O'Brien, J. J., 1995, Laboratory measurements of absorption coefficients for the 727-nm band of methane at 77 K and comparison with results derived from spectra of the giant planets, J. Quant. Spectrosc. Radiat. Trans., 54, 607-619 https://doi.org/10.1016/0022-4073(95)00102-Q
  44. Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., Caldwell, J. J., & Allison, M. D., 1996, Titan's Surface, Revealed by HST Imaging, Icarus ,119, 336 https://doi.org/10.1006/icar.1996.0023
  45. Stam, D. M., Banfield, D., Gierasch, P. J., Nicholson, P. D., & Matthews, K., 2001, Near-IR Spectrophotometry of Saturnian Aerosols-Meridional and Vertical Distribution, Icarus, 152, 407 https://doi.org/10.1006/icar.2001.6641
  46. Tomasko, M. G., et al., 2005, Rain, Winds and haze during the Huygens probe's descent to Titan's surface, Nature, 438, 765 https://doi.org/10.1038/nature04126
  47. Tsukamoto, T. & Sasada, H., 1995, Extended assignments of the $3v_1+v_3$ band of methane, J. Chem. Phys., 102, 5126 https://doi.org/10.1063/1.469238
  48. Wallace, L. & Smith, G. R., 1979, The Jovian temperature structure obtained by inversion of infrared spectral measurements, Icarus, 38, 342 https://doi.org/10.1016/0019-1035(79)90190-8
  49. Young, E. F., Rannou, P., McKay, C. P., Griffith, C. A. &, Noll, K., 2002, A three-dimensional map of Titan's tropospheric haze distribution based on Hubble Space Telescope imaging, Astron. J., 123, 3473 https://doi.org/10.1086/339826

Cited by

  1. Retrieval and tentative indentification of the 3μm spectral feature in Titan's haze vol.59, pp.8, 2011, https://doi.org/10.1016/j.pss.2011.02.002
  2. Titan at 3 microns: Newly identified spectral features and an improved analysis of haze opacity vol.199, pp.2, 2009, https://doi.org/10.1016/j.icarus.2008.09.017
  3. The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process vol.65, pp.1, 2012, https://doi.org/10.1016/j.pss.2012.02.013