• Title/Summary/Keyword: Tissues distribution

Search Result 550, Processing Time 0.026 seconds

Histopathology of a microspridian infection in ayu, Plecoglossus altivelis, from southern Korea (양식 은어의 미포자충 감염예에 대한 병리조직학적 관찰)

  • Jo, Byeong-Yeol;Gang, Hyeong-Gil;Gang, Hyo-Ju;Ryu, Gap-Min;Lee, Jae-Yeong;Park, Nam-Gyu;Heo, Min-Do
    • Journal of fish pathology
    • /
    • v.16 no.1
    • /
    • pp.23-30
    • /
    • 2003
  • On September in 1998, a microsporidian infection was recognized in ayu, Plecoglossus altivelis, farmed on Kyongnam province of South Korea. Cumulative mortality was around 10% in 10 days. Infected fish which were piping for air near the surface of the water or in the asphyxic, lethargic condition revealed darkening of body and abdominal distention. Numerous whitish nodules up to 3mm in size were observed throughout most of body organs and tissues including gill, operculum, peritoneal wall and organs. Xenomas were also histologically confirmed in multiple internal organs with the evidences suggesting circulatory disturbance. Based on the morphology of spore and xenoma, and the distribution of xenomas in organs and tissues, this disease was diagnosed to be a microsporidiosis caused by Glugea plecoglossi. The mortality might be deeply related to the local circulatory disturbance by xemonas rather than the mechano-chemical effect of xenomas on adjacent tissues.

Treatment of Chronic Empyema with Autologous Tissues (자가조직을 이용한 만성 농흉의 치료)

  • Hur, J.;Jang, B.H.;Lee, J.T.;Kim, K.T.
    • Journal of Chest Surgery
    • /
    • v.25 no.8
    • /
    • pp.850-855
    • /
    • 1992
  • Dead space of empyema occurrs from incomplete obliteration of infected pleural space from pulmonary tuberculosis, pyogenic infection, esophageal disease and post pulmonary resection. Chronic empyema can be treated by obliteration of dead space with autologous tissues such as, extrathoracic muscle flap and omental flap and thorachoplasty. Between May, 1986 to July, 1991 we treated 17 chronic empyema patients with autologous tissues and analysed the result. 1. Sex distribution was 14 males and 3 females between 5~62 years old. [mean 39.7 years old] 2. The volume of the dead space ranged from 100 to 450cc. [mean 213. 76cc] 3. The majority of used muscle flap were serratus anterior and latissimus dorsi, and there were 2 cases of am ntal flap. 4. The majority of underlying disease were pulmonary tuberculosis and there were 8 BPF[47%] in 17 patients 5. In 7 cases, thorachoplsty was needed. 6. Three cases recurred and there were no death.

  • PDF

Expression of caveolin-3 as positive intracellular signaling regulator on the development of hypertrophy in cardiac tissues

  • Kim, Joo-Heon;Han, Jin;Kim, Yong-Kwon;Yang, Young-Ae;Hong, Yonggeun
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.537-544
    • /
    • 2005
  • We have examined distribution and expression of caveolin-3 (cav-3), one of three caveolin isoforms from 16-wks-old spontaneously hypertensive rats (SHR) compared with age-matched control wistar-kyoto (WKY) rats. The expression of cav-3 was increased, whereas expression of PKB/Akt and calcineurin (Cn) was not changed in cardiac tissues of SHR compared to WKY rats. Interestingly, expression of cav-3, PKB/Akt and Cn were decreased in plasma membrane fraction in SHR compared to WKY rats. In H9c2 cardiomyoblast cells treated with phenylephrine ($50{\mu}M$, 48hr) or isoproterenol ($10{\mu}M$, 48hr), the expression of cav-3 was markedly enhanced compared to nontreated cells. Upon immunofluorescence analysis, cav-3 was localized in plasma membrane of control H9c2 cells. However phenylephrine or isoproterenol treatment caused translocation of cav-3 to perinuclear region. These results suggest that cav-3 plays as positive regulators in the development of hypertrophy in cardiac tissues of SHR rats.

Evaluation of apoptosis after ionizing radiation in feeding and starving rats

  • Lee, Jae-Hyun;Cho, Kyung-Ja;Hong, Seok-Il;Park, Min-Kyung
    • Korean Journal of Veterinary Pathology
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 1998
  • It has been known that $\gamma$-irradiation usually induces cell death in regenerating stem cell in normal tissues like skin, intestine and hematopoietic organ. The experiment were carried out to evaluate the early response of radiation injury in radiosensitive and intermediate radiosensitive tissues in feeding and starving rats with the doses of 3.5 and 7.0 Gy. The results of the study showed that the histological phenomenon was apoptosis in the doses of the radiation as the early response of tissue injury. Apoptosis were showed organ-specific and cellular specific responses suggesting that the selection of apoptosis be exactly focused on highly renewal organs and cells. It was interesting that the rats starved for 72 hours prior to irradiation induced less apoptosis in liver than fed rats. As for cellular responses it appeared that apoptotic cells were mostly distributed in ductal or periportal cells in liver of feeding rats unlikely in liver of Starving rots which showed no difference in zonal distribution. In salivary gland apoptotic cells in fed rats were highly induced in intercalating and ductal cell population than in acinar cell population although unlikely in starved rats. This study showed the value of apoptosis using the detection system of TUNEL for evaluating cellular damage after radiation injury and the diminished effect of starvation on cell damage after ionizing irradiation.

  • PDF

$^{86}Rb$ Distribution in the Lung of the Rabbit with Pneumothorax (가토 기흉에서 본 $^{86}Rb$의 분포)

  • Huh, Kap-To
    • The Korean Journal of Nuclear Medicine
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 1972
  • $^{86}Rb$ uptake of some organs and tissues, ego both lungs, both renal cortices. small intestine, liver and skeletal muscle were studied in the control and the rabbit subjected to pneumothorax. $^{86}Rb$ in the form of chloride mixed with physiological saline was intravenously. injected. The doses were $100{\mu}c$ for a rabbit. The rabbits were sacrificed at intervals of 10, 20, 40, and 60 seconds after the injection of $^{86}Rb$, by the injection of saturated KCI solution. After sacrification, the organ and tissue sample were quickly removed. $^{86}Rb$ uptake in gm of the organs and tissues were measured. On the basis of uptake value, administered doses and body weight, % dose/gm tissues per 200 gm body weight was calculated. Followings were the results; 1. Pneumothorax resulted in a marked elevation in $^{86}Rb$ uptake value of collapsed lung and returned to normal level lately. 2. Contralateral lung of pnemothorax also showed marked elevation in $^{86}Rb$ uptake value and recovered to normal level. 3. Initial $^{86}Rb$ uptake value of liver, small intestine of the rabbit with pneumothorax showed some elevation as compared to control, but that of late stage were similar with control. 4. Local blood flow determination by means of $^{86}Rb$ uptake were inadequate in the collapsed lung of pneumothorax. 5. It was suggested that the mechanism for the initial elevation of $^{86}Rb$ uptake value in each organs and tissue were different from each other.

  • PDF

The role of cellular prion protein in immune system

  • Seunghwa Cha;Mi-Yeon Kim
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.645-650
    • /
    • 2023
  • Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives.

Distribution of Acriflavine in Rats Following Intramuscular Administration of a Mixture of Acriflavine and Guanosine, a Potential Antitumor Agent (신규 항암성 화합물 아크리플라빈과 구아노신 복합체를 흰쥐에 근육주사시 아크리플라빈의 체내분포)

  • Song, Suk-Gil;Chung, Youn-Bok
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.8-14
    • /
    • 2006
  • A 1 : 1 mixture of acriflavine (ACF; CAS 8063-24-9) and guanosine is currently being evaluated as a possible antitumor agent in preclinical studies. Guanosine is known to potentiate the anticancer activity of some compounds. However, the distributions of trypaflavine (TRF) or proflavine (PRF) have not been investigated in mammals. We, therefore, investigated the distribution of TRF and PRF after i.m. administration of the combination mixture (ACF and guanosine) at a dose of 30 mg/kg ACF in rats. to analyze TRF and PRF levels in biological samples, we used an HPLC-based method. The calibration curves for TRF and PRF in the samples were linear over the concenration range of $0.05{\sim}200\;{\mu}g/ml$. The intra- and inter-day assay accuracies of this method were within ${\pm}15\%$ of norminal values and the precision did not exceed $15\%$ of relative standard diviation. The lower limits of quantitation were 50 ng/ml for both TRF and PRF. The distribution of TRF or PRF was determined by 48 h after i.m. administration of the combination mixture at a dose of 30 mg/kg ACF. TRF and PRF were distributed as the following order; kidney>lung>liver>small intestine>muscle. Of the various tissues, TRF and PRF were mainly distributed to the kidney and lung. The concentrations of TRF or PRF in the tissues 24 h after i.m. administration decreased to undetectable levels. The concentrations of TRF or PRF in the blood cells were comparable to those for the plasma. However, the concentrations of TRF or PRF in the both plasma and blood cells 12 h after i.m. administration were not detected. The number of the platelets in the 1 ml of the blood was calculated to be $0.183{\times}10^8/ml$ of blood. The PRF concentration in platelets was higher than that of TRF at initial times after i.m. administration of the combination mixture. However, both the TRF and PRF concentrations in the plateles 24 h after i.m. administration of the combination mixture were below the quantifiable limit. In conclusion, the concentrations of TRF or PRF in the various tissues, plasma, blood cells, and plateles decreased to undetectable levels 24 h after i.m. administration of the combination mixture at a dose of 30 mg/kg ACF.

Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers

  • Li, Jian-Yi;Zhang, Yang;Zhang, Wen-Hai;Jia, Shi;Kang, Ye;Zhu, Xiao-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1901-1906
    • /
    • 2012
  • Background: The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. Methods: Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT-PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. Results: The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). Conclusions: Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF

Immunochemical Localization of Tetrahydrocannabinol (THC) in Chemically Fixed Glandular Thrichomes of Cannabis (Cannabaceae)

  • Eun Soo Kim;Paul G. Mahlberg
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.215-219
    • /
    • 1999
  • Monoclonal antibody for delta-9-tetrahydrocannabiol (THC Ab), conjugated with protein A-gold, was employed as a probe to detect THC localization in the gland and subjacent cells of chemically fixed bracts of Cannabis. THC was detected in the outer wall of the disc cells, fibrillar matrix, the surface feature of secretory vesicles, and sheath throughout development of the secretory cavity. The probe was absent from vesicles. Label was also present in anticlinal walls of disc cells and walls of dermal and mesophyll cells. Little or no THC Ab was present in disc cells and none were detected in control tissues. This distribution pattern of THC Ab was similar to that in tissues prepared by high pressure cryofixation-cryosubstitution. Consistent association of THC with wall and wall-derived materials suggests that cannnabinoids are synthesized outside the plasma membrane and bound to a wall component, where-upon they are transported to the cavity with wall materials released from the disc cell wall during development of the secretory cavity.

  • PDF