DOI QR코드

DOI QR Code

The role of cellular prion protein in immune system

  • Seunghwa Cha (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Mi-Yeon Kim (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2023.08.17
  • Accepted : 2023.09.25
  • Published : 2023.12.31

Abstract

Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (NRF- 2016R1D1A1B01011371).

References

  1. Mabbott NA, Brown KL, Manson J and Bruce ME (1997) T-lymphocyte activation and the cellular form of the prion protein. Immunology 92, 161-165 https://doi.org/10.1046/j.1365-2567.1997.00331.x
  2. Antoine N, Cesbron JY, Coumans B, Jolois O, Zorzi W and Heinen E (2000) Differential expression of cellular prion protein on human blood and tonsil lymphocytes. Haematologica 85, 475-480
  3. Stahl N, Borchelt DR, Hsiao K and Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229-240 https://doi.org/10.1016/0092-8674(87)90150-4
  4. Riek R, Hornemann S, Wider G, Glockshuber R and Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413, 282-288 https://doi.org/10.1016/S0014-5793(97)00920-4
  5. Sparkes RS, Simon M, Cohn VH et al (1986) Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci U S A 83, 7358-7362 https://doi.org/10.1073/pnas.83.19.7358
  6. Zahn R, Liu A, Luhrs T et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97, 145-150 https://doi.org/10.1073/pnas.97.1.145
  7. Schmitz M, Lullmann K, Zafar S et al (2014) Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic or familial prion diseases. Neurobiol Aging 35, 1177-1188 https://doi.org/10.1016/j.neurobiolaging.2013.11.010
  8. Yang Y, Chen L, Pan HZ, Kou Y and Xu CM (2009) Glycosylation modification of human prion protein provokes apoptosis in HeLa cells in vitro. BMB Rep 42, 331-337 https://doi.org/10.5483/BMBRep.2009.42.6.331
  9. Damberger FF, Christen B, Perez DR, Hornemann S and Wuthrich K (2011) Cellular prion protein conformation and function. Proc Natl Acad Sci U S A 108, 17308-17313 https://doi.org/10.1073/pnas.1106325108
  10. Riesner D (2003) Biochemistry and structure of PrP(C) and PrP(Sc). Br Med Bull 66, 21-33 https://doi.org/10.1093/bmb/66.1.21
  11. Pan KM, Baldwin M, Nguyen J et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90, 10962-10966 https://doi.org/10.1073/pnas.90.23.10962
  12. Wille H and Requena JR (2018) The Structure of PrP(Sc) Prions. Pathogens 7, 20
  13. Diaz-Espinoza R and Soto C (2012) High-resolution structure of infectious prion protein: the final frontier. Nat Struct Mol Biol 19, 370-377 https://doi.org/10.1038/nsmb.2266
  14. Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66, 1-20 https://doi.org/10.1093/bmb/66.1.1
  15. Peggion C, Bertoli A and Sorgato MC (2017) Almost a century of prion protein(s): from pathology to physiology, and back to pathology. Biochem Biophys Res Commun 483, 1148-1155 https://doi.org/10.1016/j.bbrc.2016.07.118
  16. Chen RJ, Chang WW, Lin YC, Cheng PL and Chen YR (2013) Alzheimer's amyloid-beta oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway. ACS Chem Neurosci 4, 1287-1296 https://doi.org/10.1021/cn400085q
  17. Nicotera P (2001) A route for prion neuroinvasion. Neuron 31, 345-348 https://doi.org/10.1016/S0896-6273(01)00385-3
  18. Daude N (2004) Prion diseases and the spleen. Viral Immunol 17, 334-349 https://doi.org/10.1089/vim.2004.17.334
  19. Wierzbicka A and Deptula W (2008) The role of the immune system in the pathogenesis of prion diseases. Postepy Hig Med Dosw (Online) 62, 166-173
  20. Thompson A, MacKay A, Rudge P et al (2014) Behavioral and psychiatric symptoms in prion disease. Am J Psychiatry 171, 265-274 https://doi.org/10.1176/appi.ajp.2013.12111460
  21. Kim HO, Snyder GP, Blazey TM, Race RE, Chesebro B and Skinner PJ (2008) Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms. Adv Appl Bioinform Chem 1, 29-50
  22. Budka H, Aguzzi A, Brown P et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5, 459-466 https://doi.org/10.1111/j.1750-3639.1995.tb00625.x
  23. Kitamoto T, Muramoto T, Mohri S, Doh-Ura K and Tateishi J (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 65, 6292-6295 https://doi.org/10.1128/jvi.65.11.6292-6295.1991
  24. Malaga-Trillo E, Solis GP, Schrock Y et al (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7, e55
  25. Lopes MH, Hajj GN, Muras AG et al (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25, 11330-11339 https://doi.org/10.1523/JNEUROSCI.2313-05.2005
  26. Doeppner TR, Kaltwasser B, Schlechter J et al (2015) Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis 6, e2024
  27. Lee YJ and Baskakov IV (2014) The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion 8, 266-275 https://doi.org/10.4161/pri.32079
  28. Bravard A, Auvre F, Fantini D et al (2015) The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 43, 904-916 https://doi.org/10.1093/nar/gku1342
  29. Kouadri A, El Khatib M, Cormenier J et al (2019) Involvement of the prion protein in the protection of the human bronchial epithelial barrier against oxidative stress. Antioxid Redox Signal 31, 59-74 https://doi.org/10.1089/ars.2018.7500
  30. Isaacs JD, Jackson GS and Altmann DM (2006) The role of the cellular prion protein in the immune system. Clin Exp Immunol 146, 1-8
  31. Mattei V, Garofalo T, Misasi R et al (2004) Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett 560, 14-18 https://doi.org/10.1016/S0014-5793(04)00029-8
  32. Li R, Liu D, Zanusso G et al (2001) The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol 207, 49-58 https://doi.org/10.1006/cimm.2000.1751
  33. Durig J, Giese A, Schulz-Schaeffer W et al (2000) Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol 108, 488-495 https://doi.org/10.1046/j.1365-2141.2000.01881.x
  34. Dodelet VC and Cashman NR (1998) Prion protein expression in human leukocyte differentiation. Blood 91, 1556-1561 https://doi.org/10.1182/blood.V91.5.1556
  35. Krebs B, Dorner-Ciossek C, Schmalzbauer R, Vassallo N, Herms J and Kretzschmar HA (2006) Prion protein induced signaling cascades in monocytes. Biochem Biophys Res Commun 340, 13-22 https://doi.org/10.1016/j.bbrc.2005.11.158
  36. Martinez del Hoyo G, Lopez-Bravo M, Metharom P, Ardavin C and Aucouturier P (2006) Prion protein expression by mouse dendritic cells is restricted to the nonplasmacytoid subsets and correlates with the maturation state. J Immunol 177, 6137-6142 https://doi.org/10.4049/jimmunol.177.9.6137
  37. Isaacs JD, Garden OA, Kaur G, Collinge J, Jackson GS and Altmann DM (2008) The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 125, 313-319 https://doi.org/10.1111/j.1365-2567.2008.02853.x
  38. McCulloch L, Brown KL, Bradford BM et al (2011) Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 7, e1002402
  39. McCulloch L, Brown KL and Mabbott NA (2013) Ablation of the cellular prion protein, PrPC, specifically on follicular dendritic cells has no effect on their maturation or function. Immunology 138, 246-257 https://doi.org/10.1111/imm.12031
  40. Kim S, Han S, Lee YE et al (2016) Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure. Immunobiology 221, 94-102 https://doi.org/10.1016/j.imbio.2015.07.017
  41. Kim S, Han S, Lee HS, Kim YS, Choi EK and Kim MY (2016) Impaired spleen structure and chemokine expression in ME7 scrapie-infected mice. Immunobiology 221, 871-878 https://doi.org/10.1016/j.imbio.2016.03.008
  42. Kim S, Han S, Kim T et al (2018) Prolonged follicular helper T cell responses in ME7 scrapie-infected mice. Prion 12, 109-116 https://doi.org/10.1080/19336896.2018.1458573
  43. Fevang B, Yndestad A, Damas JK et al (2009) Chemokines and common variable immunodeficiency; possible contribution of CCL19, CCL21 and CCR7 to immune dysregulation. Clin Exp Immunol 158, 237-245 https://doi.org/10.1111/j.1365-2249.2009.04013.x
  44. Kim MY, Gaspal FM, Wiggett HE et al (2003) CD4(+) CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643-654 https://doi.org/10.1016/S1074-7613(03)00110-9
  45. Kim MY, Toellner KM, White A et al (2006) Neonatal and adult CD4+ CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J Immunol 177, 3074-3081 https://doi.org/10.4049/jimmunol.177.5.3074
  46. Fraser H and Dickinson AG (1970) Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462-463 https://doi.org/10.1038/226462a0
  47. Kimberlin RH and Walker CA (1980) Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Virol 51, 183-187 https://doi.org/10.1099/0022-1317-51-1-183
  48. Zhang B, Shen P, Yin X, Dai Y, Ding M and Cui L (2020) Expression and functions of cellular prion proteins in immunocytes. Scand J Immunol 91, e12854
  49. Brandner S (2003) CNS pathogenesis of prion diseases. Br Med Bull 66, 131-139 https://doi.org/10.1093/bmb/66.1.131
  50. Fraser H and Dickinson AG (1978) Studies of the lympho-reticular system in the pathogenesis of scrapie: the role of spleen and thymus. J Comp Pathol 88, 563-573 https://doi.org/10.1016/0021-9975(78)90010-5
  51. Liu YJ, Grouard G, de Bouteiller O and Banchereau J (1996) Follicular dendritic cells and germinal centers. Int Rev Cytol 166, 139-179 https://doi.org/10.1016/S0074-7696(08)62508-5
  52. Aguzzi A, Kranich J and Krautler NJ (2014) Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 35, 105-113 https://doi.org/10.1016/j.it.2013.11.001
  53. Heesters BA, Myers RC and Carroll MC (2014) Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14, 495-504 https://doi.org/10.1038/nri3689
  54. Fischer MB, Goerg S, Shen L et al (1998) Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582-585 https://doi.org/10.1126/science.280.5363.582
  55. Gitlin AD, Mayer CT, Oliveira TY et al (2015) HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells. Science 349, 643-646 https://doi.org/10.1126/science.aac4919
  56. Zotos D, Coquet JM, Zhang Y et al (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207, 365-378 https://doi.org/10.1084/jem.20091777
  57. McGovern G, Brown KL, Bruce ME and Jeffrey M (2004) Murine scrapie infection causes an abnormal germinal centre reaction in the spleen. J Comp Pathol 130, 181-194 https://doi.org/10.1016/j.jcpa.2003.11.001
  58. Brown KL, Stewart K, Ritchie DL et al (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5, 1308-1312 https://doi.org/10.1038/15264
  59. Raeber AJ, Montrasio F, Hegyi I et al (2001) Studies on prion replication in spleen. Dev Immunol 8, 291-304 https://doi.org/10.1155/2001/95404
  60. Prinz M, Heikenwalder M, Junt T et al (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957-962 https://doi.org/10.1038/nature02072
  61. Prinz M, Montrasio F, Klein MA et al (2002) Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc Natl Acad Sci U S A 99, 919-924 https://doi.org/10.1073/pnas.022626399
  62. Montrasio F, Frigg R, Glatzel M et al (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257-1259 https://doi.org/10.1126/science.288.5469.1257
  63. Bakkebo MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J and Tranulis MA (2015) The cellular prion protein: a player in immunological quiescence. Front Immunol 6, 450
  64. Manni G, Lewis V, Senesi M et al (2020) The cellular prion protein beyond prion diseases. Swiss Med Wkly 150, w20222
  65. Ezpeleta J, Boudet-Devaud F, Pietri M et al (2017) Protective role of cellular prion protein against TNFalpha-mediated inflammation through TACE alpha-secretase. Sci Rep 7, 7671
  66. Gadotti VM and Zamponi GW (2011) Cellular prion protein protects from inflammatory and neuropathic pain. Mol Pain 7, 59
  67. Shao J, Yin X, Lang Y et al (2023) Cellular prion protein attenuates OGD/R-induced damage by skewing microglia toward an anti-inflammatory state via enhanced and prolonged activation of autophagy. Mol Neurobiol 60, 1297-1316 https://doi.org/10.1007/s12035-022-03099-5
  68. Tsutsui S, Hahn JN, Johnson TA, Ali Z and Jirik FR (2008) Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol 173, 1029-1041 https://doi.org/10.2353/ajpath.2008.071062
  69. Petit CS, Barreau F, Besnier L et al (2012) Requirement of cellular prion protein for intestinal barrier function and mislocalization in patients with inflammatory bowel disease. Gastroenterology 143, 122-132 e115
  70. Salvesen O, Reiten MR, Espenes A, Bakkebo MK, Tranulis MA and Ersdal C (2017) LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation 14, 106
  71. Liu J, Zhao D, Liu C et al (2015) Prion protein participates in the protection of mice from lipopolysaccharide infection by regulating the inflammatory process. J Mol Neurosci 55, 279-287 https://doi.org/10.1007/s12031-014-0319-2
  72. Pan Y, Zhao L, Liang J et al (2006) Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J 20, 1886-1888 https://doi.org/10.1096/fj.06-6138fje
  73. Jiang B, Liu J and Lee MH (2019) Targeting a designer TIMP-1 to the cell surface for effective mt1-mmp inhibition: a potential role for the prion protein in renal carcinoma therapy. Molecules 24, 255
  74. Ong SH, Goh KW, Chieng CK and Say YH (2018) Cellular prion protein and gamma-synuclein overexpression in LS 174T colorectal cancer cell drives endothelial proliferation-to-differentiation switch. PeerJ 6, e4506
  75. Antonacopoulou AG, Grivas PD, Skarlas L, Kalofonos M, Scopa CD and Kalofonos HP (2008) POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: new molecules with prognostic significance? Anticancer Res 28, 1221-1227
  76. Roucou X, Giannopoulos PN, Zhang Y, Jodoin J, Goodyer CG and LeBlanc A (2005) Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12, 783-795 https://doi.org/10.1038/sj.cdd.4401629
  77. Meslin F, Hamai A, Gao P et al (2007) Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death. Cancer Res 67, 10910-10919 https://doi.org/10.1158/0008-5472.CAN-07-0512
  78. Cha S, Sin MJ, Kim MJ et al (2021) Involvement of cellular prion protein in invasion and metastasis of lung cancer by inducing treg cell development. Biomolecules 11, 285
  79. Liang J, Pan Y, Zhang D et al (2007) Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J 21, 2247-2256 https://doi.org/10.1096/fj.06-7799com
  80. Yap YH and Say YH (2012) Resistance against tumour necrosis factor alpha apoptosis by the cellular prion protein is cell-specific for oral, colon and kidney cancer cell lines. Cell Biol Int 36, 273-277 https://doi.org/10.1042/CBI20110088
  81. Yun CW, Yun S, Lee JH et al (2016) Silencing prion protein in HT29 human colorectal cancer cells enhances anticancer response to fucoidan. Anticancer Res 36, 4449-4458 https://doi.org/10.21873/anticanres.10989
  82. Gil M, Kim YK, Kim KE, Kim W, Park CS and Lee KJ (2016) Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem Biophys Res Commun 470, 213-219 https://doi.org/10.1016/j.bbrc.2016.01.038
  83. Boulay A, Masson R, Chenard MP et al (2001) High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61, 2189-2193
  84. Wang Q, Qian J, Wang F and Ma Z (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol Rep 28, 2029-2034 https://doi.org/10.3892/or.2012.2025
  85. Tanaka A and Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27, 109-118 https://doi.org/10.1038/cr.2016.151
  86. Shitara K and Nishikawa H (2018) Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 1417, 104-115 https://doi.org/10.1111/nyas.13625
  87. Chen BJ, Zhao JW, Zhang DH, Zheng AH and Wu GQ (2022) Immunotherapy of cancer by targeting regulatory T cells. Int Immunopharmacol 104, 108469