• Title/Summary/Keyword: Tissue paper

Search Result 661, Processing Time 0.041 seconds

Vascularized Osteocutaneous Fibular free Flap for Reconstruction of Mid Foot

  • Chung, Yoon-Kyu;Hong, Joon Pio;Kim, Sug-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.1
    • /
    • pp.75-79
    • /
    • 2000
  • The foot plays a vital role in standing and gait. This function results from harmonious interaction of bones, joints, and soft tissue. An imbalance or a defect in such structures can lead to impaired function of the foot. The mid foot, composed of cunieforms, navicular and cuboid bone, plays a vital role in maintaining longitudinal and transverse arches and injury or defects to this region can cause instability of the foot. This paper reports a case of complex foot injury; soft tissue defect of dorsum of foot, and medial and intermediate cuneiform bone defect, reconstructed in a single stage using vascularized osteocutaneous fibular free flap. Segmented to fit the defects of medial and intermediate cuneiform bones and a skin paddle providing adequate coverage, restored the stability to the arches and function of the midfoot. The fibula osteocutaneous free flap has appealing characteristics for reconstruction of the foot and the complex mid foot injuries can be considered to the long list of indications.

  • PDF

The Development of Microwave Tissue Coagulator (마이크로파를 이용한 수술기의 개발)

  • Park, B.W.;Jeong, B.S.;Park, Mi-Gnon;Lee, S.B.;Son, W.J.;Jeong, D.G.;Yang, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.81-83
    • /
    • 1989
  • In surgery the hemostatic control is very important for the parenchymatous organs. These organs consist of the fragile and the blood content tissues such as liver, spleen and kidney, etc.. One of the control methods to solve this problem is to insert the mono polar typed needle electrode, which gathers the thermal effect of microwave, directly into tissues so as to coagulate and stop the hemorrhage. This method has same advantages: First, the range of the heat energy is limited. Second, the coagulation, the hemostatic characteristic, and stability are excellent. Third, more convenient operation is possible. This paper is aimed to manufacture the microwave tissue coagulation system and to suggest the new direction for development, hereafter.

  • PDF

Identifying Minimum Datasets for Pressure Ulcer Assessment and Analysis of Nursing Records in Home Nursing (가정간호의 욕창 의사결정지원 서비스를 위한 욕창 사정 MDS 규명 및 간호 기록 분석)

  • Kim, Hyun-Young;Park, Hyeon-Ae
    • Research in Community and Public Health Nursing
    • /
    • v.20 no.1
    • /
    • pp.105-111
    • /
    • 2009
  • Purpose: The purpose of this study was to identify minimum datasets for ulcer assessment and to map the minimum datasets to paper-based nursing records for pressure ulcer care in homecare setting. Methods: To identify minimum datasets for pressure ulcer assessment, the authors reviewed four guidelines for pressure ulcer care. The content validity of the minimum datasets was assessed by three homecare nurse specialists. To map the minimum datasets to nursing records, the authors examined 107 pressure ulcer events derived from 45 pressure ulcer patients who received home nursing from two hospitals in Gyeonggi Province. Results: The minimum datasets for initial assessment were anatomical location, stage, size, tissue, exudate, condition of periwound skin, undermining, odor, and pain. 'Location' was recorded best, accounting for a complete recording rate of 98.1%. 'Exudate' and 'pain' showed the poorest record, accounting for 2.8% and 0%, respectively. The minimum datasets for progress assessment were wound size, tissue, and exudate, each accounted for 31.8%, 2.8%, and 4.7%, respectively. Conclusion: This study concluded that data on pressure ulcer assessment was not sufficient homecare and it can be improved by adopting minimum datasets as identified in this study.

  • PDF

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.

A SCANNING ELECTRON MICROSCOPIC STUDY OF THE CLEANSING EFFECT OF RC-PREP ON THE DENTINAL WALLS OF THE ROOT CANAL (RC-Prep의 근관정화효과(根管淨化效果)에 관(關)한 주사전자현미경적(走査電子顯微鏡的) 연구(硏究))

  • Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.65-69
    • /
    • 1981
  • This study was conducted to evaluate the cleansing effect of RC-Prep (10% Urea-peroxide, 15% EDTA) on apical third of root canal. Thirty single rooted human teeth were divided into three groups, and ten canals in each group were all enlarged three sizes greater than their original diameter with K-type files and irrigated with each of three irrigants. The three used irrigants were RC-prep (Premier Co.) in combination with 3.5% Sodium hypochlorite, Normal saline, 3.5% Na OCL. In each group, one of three irrigants were used in conjunction with instrumentation as they would be during clinical condition. After final irrigation, the canals were dried with paper points and the teeth were split longitudinally. The cleanness of canal walls iii the apical region were examined with Scanning Electron Microscope. The following results were drawn. 1. The use of Rc-Prep in combination with 3.5% NaOCl showed more clean canal surface than the use of other two irrigants. 2. The canals used RC-Prep in combination with 3.5% NaOCl revealed remnants of pulp tissue and smeared layer, but the openings of dentinal tubules were relatively clean and wide. 3. There was no significant difference in the debridement effect of 3.5% NaOCl and Saline solution. 4. The use of Saline solution showed great amount of remnants of pulp tissue which couldn't find in the use of 3.5% NaOCl.

  • PDF

Performance analysis of bone scaffolds with carbon nanotubes, barium titanate particles, hydroxyapatite and polycaprolactone

  • Osfooria, Ali;Selahi, Ehsan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • This paper presents a novel structural composition for artificial bone scaffolds with an appropriate biocompatibility and biodegradability capability. To achieve this aim, carbon nanotubes, due to their prominent mechanical properties, high biocompatibility with the body and its structural similarities with the natural bone structure are selected in component of the artificial bone structure. Also, according to the piezoelectric properties of natural bone tissue, the barium titanate, which is one of the biocompatible material with body and has piezoelectric property, is used to create self-healing ability. Furthermore, due to the fact that, most of the bone tissue is consists of hydroxyapatite, this material is also added to the artificial bone structure. Finally, polycaprolactone is used in synthetic bone composition as a proper substrate for bone growth and repair. To demonstrate, performance of the presented composition, the mechanical behaviour of the bone scaffold is simulated using ANSYS Workbench software and three dimensional finite element modelling. The obtained results are compared with mechanical behaviour of the natural bone and the previous bone scaffold compositions. The results indicated that, the modulus of elasticity, strength and toughness of the proposed composition of bone scaffold is very close to the natural bone behaviour with respect to the previous bone scaffold compositions and this composition can be employed as an appropriate replacement for bone implants.

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.

Survival Time Prediction for Adenocarcinoma Lung Cancer based on Pathological Image Analysis (폐암 선암 생존시간 예측을 위한 병리학적 영상분석)

  • Vo, Vi Thi-Tuong;Kim, Aera;Lee, TaeBum;Kim, Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.779-782
    • /
    • 2021
  • Survival time analysis is one of the main methods used by the pathologist to prognosis for cancer patients. In this paper, we strive to estimate the individual survival time of Adenocarcinoma (ADC) lung cancer patients from pathological images by adopting the convolutional neural network called the SurvPatchV1 model. First, we extracted tissue patches from the whole-slide images (WSI) to deal with extremely large dimensions of WSI. Then the survival time of each patch is estimated through the SurvPatchV1 model. Finally, the individual survival time of each patient is computed. The proposed method is trained and tested on the subset of the NLST dataset for ADC lung cancer. The result demonstrates that our model can obtain all tissue information in lieu of only tumor information in a whole pathological image to estimate the individual survival time.

Mechanisms of microparticle propulsion by laser ablation

  • Gojani, A.B.;Menezes, V.;Yoh, J.J.;Takayama, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.837-841
    • /
    • 2008
  • Propulsion of gene coated micro-particles is desired for non-intrusive drug delivery inside biological tissue. This has been achieved by the development of a device that uses high power laser pulses. The present paper looks at the mechanisms of micro-particle acceleration. Initially, a high power laser pulse is focused onto the front side of a thin aluminium foil leading to its ablation. The ablation front drives a compression wave inside the foil, thus leading to the formation of a shock wave, which will later reflect from the rear side of the foil, due to acoustic impedance mismatch. The reflected wave will induce an opposite motion of the foil, characterized by a very high speed, of the order of several millimeters per microsecond. Micro-particles, which are deposited on the rear side of the foil, thus get accelerated and ejected as micro-projectiles and are able to penetrate several hundreds of micrometers inside tissue-like material. These processes have been observed experimentally by using high-speed shadowgraphy and considered analytically.

  • PDF

A Review on Use of Carbohydrate-based Fillers and Pigments in Packaging Paper

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • As one of traditional packaging materials, paper and paperboard are being more popular and beneficial thanks to their environmental sustainability and have been widely used in packaging applications, from light weight infusible tissue for tea/coffee bags to heavy duty boards for the distribution. Papermakers have to design the products having a desired customized function with their paper machine. Globally, the use of filler and pigment in papermaking is now a very common practice to meet the needs of customers. Many benefits can be achieved as a result of filler addition, which mainly includes cost and energy savings. The replacement of traditional mineral fillers and pigments with biodegradable and renewable carbohydrate polymers is a very interesting and promising research topic due to the concern of environmental impact. In this review paper, the use of traditional and novel carbohydrate fillers and pigments in cellulosic paper is highlighted. It is noteworthy that there are still some challenges and technical barriers associated with the use of these organic materials in point of structural stabilities and manufacturing costs, although most of them are available in market as the commercialized products. With the emerging nanotechnologies, it is believed that the use of carbohydrate-based filler and pigment for papermaking will increase and bring technical advantages to industry.