• Title/Summary/Keyword: Tissue paper

Search Result 659, Processing Time 0.032 seconds

Arthrodesis of the Knee with Vascularized Fibular Graft - A Case of Infected Total Knee Arthroplasty - (혈관 부착 비골 전위술을 이용한 슬관절 유합술 - 슬관절 전치환술 후 감염이 합병된 증례 -)

  • Chung, Duke-Whan;Han, Chung-Soo;Lee, Jae-Hoon;Jeong, Sun-Teak;Park, Jin-Sung
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • An infection after total knee arthroplasty has many complications such as severe bone defect, skin and soft tissue problems, devastated general condition, so arthrodesis is preferred as treatment option. However, poor bony contact due to severe bone defect and inadequate conditions of the soft tissue often cause nonunion or severe limb shortening after arthrodesis. More over these conditions, it is not easy to choose appropriate fixative devices. In these situations, the arthrodesis using vascularized fibular graft can be the solution. Vascularized fibular graft (VFG) can playa role as a suitable material for the treatment of bone defects. And VFG can overcome poor blood circulation caused by scar tissues, and can be relatively more durable and adequate length. In the long term, VFG can be hypertrophied by weight bearing, and will give mechanical stablility. The purpose of the paper is to report the successful results of arthrodesis using VFG in a patient who got extensive bone defect after failed revision total knee arthroplasty with infection.

  • PDF

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF

Development of Three-dimensional Scaffold for Cartilage Regeneration using Microstereolithography (마이크로 광 조형 기술을 이용한 연골조직 재생용 3 차원 인공지지체 개발)

  • Lee, Seung-Jae;Kang, Tae-Yun;Park, Jung- Kyu;Rhie, Jong-Won;Hahn, Sei-Kwang;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1265-1270
    • /
    • 2007
  • Conventional methods for fabricating three-dimensional (3-D) scaffolds have substantial limitations. In this paper, we present 3-D scaffolds that can be made repeatedly with the same dimensions using a microstereolithography system. This system allows the fabrication of a pre-designed internal structure, such as pore size and porosity, by stacking photopolymerized materials. The scaffolds must be manufactured in a material that is biocompatible and biodegradable. In this regard, we synthesized liquid photocurable biodegradable TMC/TMP, followed by acrylation at terminal ends. And also, solidification properties of TMC/TMP polymer are to be obtained through experiments. Cell adhesion to scaffolds significantly affects tissue regeneration. As a typical example, we seeded chondrocytes on two types of 3-D scaffold and compared the adhesion results. Based on these results, the scaffold geometry is one of the most important factors in chondrocyte adhesion. These 3-D scaffolds could be key factors for studying cell behavior in complex environments and eventually lead to the optimum design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  • PDF

Influences of Adrenoreceptor Blockades on the Dose Response to Epinephrine (Epinephrine의 dose-response에 미치는 ${\alpha}-$${\beta}-receptor$ blocking agents의 영향(影響))

  • Cheon, Yun-Sook;Chun, Boe-Gwun;Shin, Man-Ryun
    • The Korean Journal of Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.49-59
    • /
    • 1977
  • Adrenergic receptors are now classified into alpha type and beta type These adrenergic receptors are distributed in various tissue in different patterns. Therefore, the adrenergic response of a certain tissue may be different from those of the other tissues, and such differences may exist among various species of animals. In this paper, the authors attempt to reevaluate the effect of epinephrine on the isolated atria, aortic strips, and vas deferenses of rabbits preincubated with alpha receptor blockades (ergotamine and dibenamine) and beta receptor blockades (propranolol and dichloroisoproterenol) in Locke-Ringer bathing medium. The results obtained were summarized as follows; 1) The dose dependent responses of isolated atria to epinephrine were significantly inhibited by propranolol and dichloroisoproterenol, and slightly inhibited by dibenamine, but not affected by ergotamine. 2) The dose dependent responses of excised aortic strips to epinephrine were significantly inhibited by ergotamine and dibenamine, but the responses were slightly potentiated by propranolol, and significantly by dichloroisoproterenol. 3) The dose dependent responses of isolated vas deferenses to epinephrine were significantly inhibited by ergotamine and dibenamine, but slightly potentiated by propranolol and dichloroisoproterenol.

  • PDF

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.33-38
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific race image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based fare model.

  • PDF

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

Pain Physiology and Principles of Physical Therapy (통증 생리와 물리치료 원리)

  • Kim, Jong-Man;Ahn, Duck-Hyun
    • Physical Therapy Korea
    • /
    • v.5 no.2
    • /
    • pp.106-117
    • /
    • 1998
  • The pain is common among individuals with physical disabilities. It can interfere with therapy since patients with pain can become uncooperative and reluctant to move. This paper reviews the natural physiological mechanisms that can reduce pain perception, and considers physiological mechanisms which contribute to clinical pain by describing how the pain system changes its sensitivity depending upon the body's needs. The peripheral and central mechanisms contributing to sensitised nociceptive system are described with reference to the symptoms of clinical pain such as hyperalgesia, allodynia sopntaneous 'on-going'-projected and referred pain. It is suggested that in some chronic pain the nociceptive system maintains a state of sensitivity despite the absence of on-going tissue damage and under such circumstances the nociceptive system itself may have become dysfunctional. Such situations are often initiated by damage to nervous tissue which results in changes in the activity and organization of neuronal circuits within the central nervous system. The ability of the nociceptive system to operate in a suppressed state is also discussed with reference to pain modulation. The physical therapist can help facilitate the activation of these mechanisms through a combination of noninvasive modalities, functional activities, and the therapeutic use of self.

  • PDF

Organ Recognition in Ultrasound images Using Log Power Spectrum (로그 전력 스펙트럼을 이용한 초음파 영상에서의 장기인식)

  • 박수진;손재곤;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.876-883
    • /
    • 2003
  • In this paper, we propose an algorithm for organ recognition in ultrasound images using log power spectrum. The main procedure of the algorithm consists of feature extraction and feature classification. In the feature extraction, as a translation invariant feature, log power spectrum is used for extracting the information on echo of the organs tissue from a preprocessed input image. In the feature classification, Mahalanobis distance is used as a measure of the similarity between the feature of an input image and the representative feature of each class. Experimental results for real ultrasound images show that the proposed algorithm yields the improvement of maximum 30% recognition rate than the recognition algorithm using power spectrum and Euclidean distance, and results in better recognition rate of 10-40% than the recognition algorithm using weighted quefrency complex cepstrum.

Research Findings and Implications for Physical Therapy of Spasticity (강직의 최선 지견과 물리치료와의 관련성)

  • Kim, Jong-Man;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 1995
  • Spasticity has been defined as a motor disorder characterised by a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks resulting in hyperexcitability of the stretch reflexes as one component of the upper motor neuron syndrome. Weakness and loss of dexterity, however, are considered to be more disabling to the patient than changes in muscle tone. The discussion includes the important role that alterations in the physiology of motor units, notably changes in firing rates and muscle fiber atrophy, play in the manifestation of muscle weakness. This paper considers both the neural and mechanical components of spasticity and discusses, in terms of clinical intervention, the implications arising from recent research. Investigations suggest that the resistance to passive movement in individuals with spasticity is due not only to neural mechanisms but also to changes in mechanical properties of muscle. The emphasis is on training the individual to gain control over the muscles required for different tasks, and on preventing secondary and adaptive soft tissue changes and ineffective adaptive motor behaviours.

  • PDF

Vascularized Osteocutaneous Fibular free Flap for Reconstruction of Mid Foot

  • Chung, Yoon-Kyu;Hong, Joon Pio;Kim, Sug-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.1
    • /
    • pp.75-79
    • /
    • 2000
  • The foot plays a vital role in standing and gait. This function results from harmonious interaction of bones, joints, and soft tissue. An imbalance or a defect in such structures can lead to impaired function of the foot. The mid foot, composed of cunieforms, navicular and cuboid bone, plays a vital role in maintaining longitudinal and transverse arches and injury or defects to this region can cause instability of the foot. This paper reports a case of complex foot injury; soft tissue defect of dorsum of foot, and medial and intermediate cuneiform bone defect, reconstructed in a single stage using vascularized osteocutaneous fibular free flap. Segmented to fit the defects of medial and intermediate cuneiform bones and a skin paddle providing adequate coverage, restored the stability to the arches and function of the midfoot. The fibula osteocutaneous free flap has appealing characteristics for reconstruction of the foot and the complex mid foot injuries can be considered to the long list of indications.

  • PDF