• Title/Summary/Keyword: Tissue engineering applications

Search Result 210, Processing Time 0.024 seconds

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF

The Applications of the Duplex Stainless Steel as Hyperthermia Materials

  • Kim, Young-Kon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.1-7.1
    • /
    • 2009
  • The use of Duplex stainless steel as a thermo-implant categorizes into two clinical applications: hyperthermia and thermal ablation or destruction. The goal of hyperthermia is to destroy the heat-sensitive abnormal cells and minimize normal cell death maintaining heat between $42^{\circ}C$ and $46^{\circ}C$. Thermal ablation takes place when the local tissue temperature increases greater than $46^{\circ}C$. This elevated temperature denatures protein irreversibly resulting cellular death. The author introduced several thermo-implants such as thermo-rod, thermo-stent, thermo-coil and thermoacupuncture-needle. Those thermo-implants are made of duplex stainless steel which can produce regulated heat by itself within an induction magnetic field. Thermal ablation characteristics of the thermo-rod on tumor hyperthermia depend on configurations of the thermo-rods and the magnitude of the induction magnetic strength. The exothermic properties of the thermo-implants can be characterized using the calorimetric test and the heat affected zone(HAZ) analyses in vitro. Thermal radiation studies using thermo-coils and thermo-stents show the capability of the occlusion of animal blood vessels and inhibiting the proliferation of the abnormal smooth muscle cell growth and inflammatory cell reactions maintaining the heat between $42^{\circ}C$ and $46^{\circ}C$ minimizing a normal cell death in the study on external iliac artery of the New Zealand White (NZW) rabbit. Thermal stimulation study using thermo-acupuncture needles suggests the potential applications of the automated acupunctural therapies.

  • PDF

Status of Bioactive Glass (생체 활성 유리 국내외 현황)

  • Kim, Hyeong-Jun
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.216-232
    • /
    • 2018
  • The average life span is over 80 years of age, and various biomaterials have being studied. Many research institutes and companies around the world have been commercializing bioactive glass through R&D, however, there is not much research in Korea. Most bioactive glass is applied to bone regeneration in powder form due to its excellent bio-compatibility. Recently, new applications such as scaffolds for tissue engineering and nerve regeneration have been found in composite form. The global market size is not as large as US $ 556 million in 2019, but the growth rate is very high at a CAGR of 14.35 %. This field is waiting for the challenge of new researchers.

Enzymatic Synthesis of Sorbitan Methacrylate: Effect of Acyl donor and Molar ratio

  • Lee, Hye-Jin;Jeong, Gwi-Taek;Lee, Kyoung-Min;Ryu, Hwa-Won;Kim, Do-Man;Park, Don-Hee;Kim, Hae-Sung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.296-299
    • /
    • 2005
  • Sugar polymers have been considered as biomaterial. Biomaterials are widely utilized for a medical applications in direct contact with living tissue Clearly, biomaterials must be carefully and microscopically fabricated for optimal acceptance within the living organism in both functional and structural senses. In this study, the enzymatic synthesis of sorbitan methacrylate from 1,4-sorbitan via the manipulation of an immobilized biocatalyst (Novozym 435) and acryl donors (methacrylic acid and vinyl methacrylate) was evaluated.

  • PDF

A Novel Molecular Monitoring of Hyaluronic Acid Degradation using Quantum Dots

  • Kim, Ji-Seok;Hahn, Sei-Kwang;Kim, Sung-Jee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.251-251
    • /
    • 2006
  • A real time bio-imaging of HA degradation was successfully carried out using HA-quantum dot conjugates. HA-ADH with ADH content of ca. 70 mol% was synthesized and conjugated with quantum dots containing carboxyl terminal ligands which were activated by the addition of HOBt and EDC in DMSO. When the concentration of HA-ADH solution was higher than 4 wt%, HA-ADH hydrogels incorporating quantum dots could be synthesized in 30 minutes. These novel HA-quantum dot conjugates and the precursor solution of HA hydrogels incorporating quantum dots were injected to the nude mouse and investigated to elucidate the biological roles of HA in the body for various future tissue engineering applications.

  • PDF

Preparation and Properties of PEG Modified PNVP Hydrogel

  • Son, Young-Kyo;Kim, Ji-Heung;Jeon, Young-Sil;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.527-532
    • /
    • 2007
  • Polymer hydrogel has attracted considerable interest as a soft material which is finding expanding applications in pharmaceutics and various biomedical fields. In this work, modified PNVP hydrogels were synthesized by crosslinking polymerization of NVP monomer in the presence of PEG macromer with a methoxy end. The effect of the tethered PEG chain on the properties of the hydrogel was investigated in terms of its swelling capacity, compression gel strength, and the morphology of the resulting hydrogels. These PEG-modified PNVP hydrogels possessed good biocompatibility and a decreased protein (fibrinogen) adsorption, thereby indicating their potential as novel drug delivery matrices and scaffold for tissue engineering.

Slotted Implantable Patch Antenna for ISM Band Application and Its Usage in WiMAX with an I-Shaped Defected Ground Structure

  • Ayubi, Adil Al;Sukhija, Shikha;Sarin, Rakesh Kumar
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.359-363
    • /
    • 2017
  • A slotted implantable patch antenna with microstrip feeding is proposed for industrial, scientific, and medical band applications. The result is verified by implanting the antenna in animal tissue. Further, by varying the ground width and introducing a defect into the ground structure, the antenna becomes applicable for worldwide interoperability for microwave access operations. A simulation is performed using Empire XCcel software. An Agilent vector network analyzer is used for analyzing the return loss performance. Simulated and measured results are compared. Antennas with and without defected ground structure both have key advantages including low profile, desirable return loss, good impedance matching and required bandwidth.

Preparation of Biodegradable Thermo-responsive Polyaspartamides with N-Isopropylamine Pendent Groups (I)

  • Moon, Jong-Rok;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1981-1984
    • /
    • 2006
  • Novel amphiphilic, thermo-responsive polyaspartamides which showed both LCST (lower critical solution temperature), and sol-gel transition were prepared and characterized. The polyaspartamide derivatives were synthesized from polysuccinimide, the polycondensate of aspartic acid monomer, via successive nucleophilic ring-opening reaction by using dodecylamine and N-isopropylethylenediamine (NIPEDA). At the intermediate composition ranges, the dilute aqueous solution exhibited a thermally responsive phase separation due to the presence of LCST. The phase transition temperature was controllable by changing the content of pendent groups. In addition, a physical gelation, i.e. the sol-gel transition was observed from the concentrated solutions, which was elucidated by dynamic viscoelastic measurements. These novel injectable and thermo-responsive hydrogels have potential for various biomedical applications such as tissue engineering and current drug delivery system.

Measurements of Optical Constants of Biomedical Media Based on Time-Resolved Reflectance (시간 분해 반사율 측정에 의한 다중산란 매질의 광학 계수 측정)

  • Jeon, K.J.;Park, S.H.;Kim, U.;Yoon, K.W.;Kim, W.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.235-239
    • /
    • 1996
  • In recent years, the optical properties of multiple-scattering media like tissue have been studied for their potential applications in medicine. In this work the optical properties of multiple scattering media were investigated using the time-resolved reflectance measurement. The reflected light was measured by time-correlated single photon counting system. The transport scattering and absorption coefficient are related to the initial rapid decay and the subsequent decay in reflected light, respectively. Also the optical properties of the samples were measured by conventional method, ie., using continuous wave light. When the distance between the light source and the detector is over 8mm, the optical coefficient can be measured accurately using the suggested method.

  • PDF

Promotion of 3T3 and HDF Cell Migration by Gelatin-modified Fibroin Microspheres

  • Se Change Kwon;Won Hur
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.186-191
    • /
    • 2023
  • The goal of this study was to use gelatin to modify the surface of fibroin microspheres to enhance their biofunctionality for tissue engineering and regenerative medicine applications. Three different methods were used for the modification: coating, incorporation, and covalent bonding. Wound-healing assays demonstrated that gelatin modification of fibroin microspheres enhances 3T3 and HDF cell migration. Although the level of gelatin coverage varied depending on the method used, there was no significant difference between the modified microspheres. The gelatin-modified microspheres also increased the migration velocity of individual 3T3 cells. The results suggest that gelatin modification of fibroin microspheres is a promising approach for developing functional biomaterials with enhanced biological properties. Further optimization of gelatin modification is necessary to maximize the biofunctionality of fibroin microspheres.