• 제목/요약/키워드: Tissue differentiation

검색결과 869건 처리시간 0.035초

조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구 (Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering)

  • 송진아;류현모;최진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권4호
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.

조직배양공학을 이용한 인공피부의 개발 및 응용 (Development and Application of Artificial Skin Using Tissue Engineering)

  • 양은경;박순희;박정극
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.14-17
    • /
    • 1995
  • An in vitro construct of three dimensional artificial skin equivalent has been engineered using human cervical epithelial cells and human foreskin fibroblasts with a matrix of bovine type I collagen. Two cell lines were established from cervical uteri cancer tissues which have the HPV(human papillomavirus)18 genome. These two cell lines came from the same origin but have slight differencies in growth rate and tumorigenicity. The organotypic raft culturing of epithelial cells were accomplished at air-liquid interface. The differentiation related characteristics were examined by immunohistochemistry using monoclonal antibodies against EGFreceptor, cytokeratin 5/6/18 as proliferation markers and against filaggrin, involucrin, and cytokeratin 10/13 as differentiation marker. We have obtained the stratification and the differentiation in the artificial skin equivalent, and differentiation-related proteins were expressed more in the C3-artificial skin, and proteins of proliferation were expressed more in the C3N-artificial skin, relatively. We found that reconstituted artificial skin have the same characteristics of differentiation proteins of original tissue or cells of human body.

  • PDF

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Fluorescently Labeled Nanoparticles Enable the Detection of Stem Cell-Derived Hepatocytes

  • Ha, Young-Eun;Shin, Jin-Sup;Lee, Dong-Yun;Rhim, Tai-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1983-1988
    • /
    • 2012
  • Stem cell transplantation is emerging as a possible new treatment for liver cirrhosis, and recent animal studies have documented the benefits of stem cell therapy in a hepatic fibrosis model. However, the underlying mechanism of stem cell therapy is still unclear. Among the proposed mechanisms, the cell replacement mechanism is the oldest and most important, in which permanently damaged tissue can be replaced by normal tissue to restore function. In the present study, Cy5.5-labeled superparamagnetic iron oxide (SPIO) was used to label human mesenchymal stem cells. The uptake of fluorescently labeled nanoparticles enabled the detection and monitoring of the transplanted stem cells; therefore, we confirmed the direct incorporation and differentiation of SPIO into the hepatocyte-like transplanted stem cells by detecting human tyrosine aminotransferase (TAT), well-known enzymatic marker for hepatocyte-specific differentiation.

뽕잎 n-부탄올 추출물의 치주인대세포에서 LPS로 유도된 염증성 사이토카인의 억제와 골 형성 분화 조절 (n-Butanol Extract of Mulberry Leaves Suppresses LPS-induced Inflammatory Cytokines and Modulates Osteogenic Differentiation in Periodontal Ligament Cells)

  • 최정이;김대근;김은희;이정근
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.309-314
    • /
    • 2015
  • Periodontitis is a chronic inflammatory disease that is known to have the characteristics of destructed periodontal tissue. Anti-oxidant and anti-inflammatory effects of mulberry leaves in periodontal tissue is not well known until now. We investigated the effects of n-butanol extract of mulberry leaves on the lipopolysaccharide (LPS)-induced proinflammatory cytokines, such as $IL-1{\beta}$, IL-6, IL-8 and modulates osteogenic differentiation in periodontal ligament cells. The expression levels of Runx2, ALP and mRNA were increased by n-butanol extract of mulberry leaves at the concentration of $100{\mu}g/ml$ in periodontal ligament cells. n-Butanol extract of mulberry leaves extract reduced the range of pathophysiological processes, such as inflammation and increase in the level of osteogenic-related genes. These findings suggest that n-butanol extract of mulberry leaves has therapeutic effects on periodontitis and periodontal tissue regeneartion.

벼의 약배양에 관한 연구 2. 분화배지에 이식된 Haploid Callus의 발생 및 분화 (Studies on the Anther Culture of Rice 2. Histological observation of haploid callus inoculated on differentiation medium)

  • 한창열
    • Journal of Plant Biology
    • /
    • 제13권3호
    • /
    • pp.17-19
    • /
    • 1970
  • Histological observation of micropore-originated haploid rice callus was reported previously. Present study was attempted to clarify the growth or development of the calli when they were transferred to differentiation media prepared exclusively for differentiation of plantlets. When the callus was transferred to differentiation medium, the cells and tissues became radially elongated. Meristematic tissues were present but few in number, and their structures were quite different from those grown in the propagaton medium. Differentiation of tracheid, chloroplast, and epidermis-like cell layer, and formation of gap in the callus tissue were more conspicuous in differentiation media. Approximately ten days after transfer of callus to differentiation medium, plantlet was formed.

  • PDF

연조직종양의 새로운 WHO 분류를 중심으로: 혈관종, 연골-골종과 불확실한분화종에 대하여 (Vascular Tumors, Chondroid-osseous Tumors, Tumors of Uncertain Differentiation: An Update Based on the New WHO Soft Tissue Classification)

  • 서경진
    • 대한골관절종양학회지
    • /
    • 제14권2호
    • /
    • pp.79-85
    • /
    • 2008
  • 연조직종양의 분류는 종양학에서 영상의학과의사와 임상을 담당하는 정형외과의사, 종양학자 그리고 병리학자의 진단과 예후의 재현을 용이하게 하는 필수적인 지침이다. 연조직종양의 이해는 과거 10년 동안에 걸쳐 주요 변화와 더불어 진보가 있었고, 이를 바탕으로 연조직종양의 새로운 분류가 WHO에 의해 2002년에 이루어졌다. 이 개정은 이전에 발표된 분류와 많은 부분에서 다른 내용의 접근을 하였고, 이 작업에는 유전학과 분자생물학 그리고 임상분야의 전문가들이 참여하였다. 여기에서는 과거에 알고 있었거나 특성이 알려진 종양을 포함하여 새로운 큰 변화나 작은 변화가 일어난 부분에 대해서 정리를 하였다. 이러한 내용의 연조직종양의 새로운 WHO 분류를 혈관종, 연골-골종 그리고 불확실한분화종을 중심으로, 큰 변화와 작은 변화로 나누어서 설명하고 새롭게 소개되는 병명을 정리하였다. 이 새로운 WHO의 연조직 종양의 분류를 이해하여, 종양의 진단과 예후의 재현을 용이하게 하는 필수적인 지침으로 사용할 수 있을 것으로 생각된다.

  • PDF

Fat Cell Formation and Obesity-Related Diseases

  • Kawada, Teruo
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.105-112
    • /
    • 2003
  • Animals possess a highly sophisticated mechanism of storing energy in adipose tissue inside their bodies. However, in humans it has been clarified that adipocyte (fat cell), which composes the body fat (adipose) tissues, development and the extent of subsequent fat accumulation are closely associated with the occurrence and advancement of various common diseases (e.g., type-2 diabetes, coronary artery disease, and hypertension) resulting from obesity. Recent exciting progress in clinical and biochemical studies of adipocytes has rapidly clarified the functions of adipocytes and adipose tissue. Interesting findings are the function of white adipocytes as "secreting cells" and the molecular mechanism undelying adipocyte differentiation at the transcriptional level in relation to nuclear receptors. Consequently, the adipose tissue is being targeted for the prevention or treatment of many common diseases. In this review, I will focus on recent information on characteristics of adipocytes and the relationship between obesity and common obesity-related diseases. diseases.