• Title/Summary/Keyword: Tissue Heterogeneity Correction

Search Result 8, Processing Time 0.022 seconds

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF

The Impact of Tissue Inhomogeneity Corrections in the Treatment of Prostate Cancer with Intensity-Modulated Radiation Therapy (전립선암의 세기조절 방사선 치료시 밀도보정의 효과)

  • Han Youngyih;Park Won;Huh Seung Jae
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • Purpose: To investigate the effects of tissue inhomogeneity corrections on the dose delivered to prostate cancer patients treated with Intensity-Modulated Radiation Therapy (IMRT). Methods and Materials: For five prostate cancer patients, IMRT treatment plans were generated using 6 MV or 10 MV X-rays. In each plan, seven equally spaced ports of photon beams were directed to the isocenter, neglecting the tissue heterogeneity in the body. The dose at the isocenter, mean dose, maximum dose, minimum dose and volume that received more than 95% of the isocenter dose in the planning target volume ( $V_{p>95%}$) were measured. The maximum doses to the rectum and the bladder, and the volumes that received more than 50, 75 and 90% of the prescribed dose were measured. Treatment plans were then recomputed using tissue inhomogeneity correction maintaining the intensity profiles and monitor units of each port. The prescription point dose and other dosimetric parameters were remeasured. Results: The inhomogeneity correction reduced the prescription point dose by an average 4.9 and 4.0% with 6 and 10 MV X-rays, respectively. The average reductions of the $V_{p>95%}$ were 0.8 and 0.9% with the 6 and 10 MV X-rays, respectively. The mean doses in the PTV were reduced by an average of 4.2 and 3.4% with the 6 and 10 MV X-rays, respectively. The irradiated volume parameters in the rectum and bladder were less decreased; less than 2.1 % (1.2%) of the reduction in the rectum (bladder). The average reductions in the mean dose were 1.0 and 0.5% in the rectum and bladder, respectively. Conclusions: Neglect of tissue inhomogeneity in the IMRT treatment of prostate cancer gives rise to a notable overestimation of the dose delivered to the target, whereas the impact of tissue inhomogeneity correction to the surrounding critical organs is less significant.

  • PDF

Treatment outcome and long-term stability of orthognathic surgery for facial asymmetry: A systematic review and meta-analysis

  • Yoon-Ji Kim;Moon-Young Kim;Nayansi Jha;Min-Ho Jung;Yong-Dae Kwon;Ho Gyun Shin;Min Jung Ko;Sang Ho Jun
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.89-107
    • /
    • 2024
  • Objective: This systematic review aimed to provide a comparative analysis of the treatment outcomes, including hard and soft tissues, postoperative stability, temporomandibular disorders (TMD), and quality of life (QoL), in patients with facial asymmetry who underwent orthognathic surgery. Methods: The primary objective was to address the question, "How do different factors related to surgery affect the outcomes and stability of orthognathic surgery in the correction of facial asymmetry?" A meta-analysis was conducted on the outcome parameters, such as skeletal, dental, and soft tissue symmetry, TMD, QoL, and relapse, using the Hartung-Knapp-Sidik-Jonkman method for random-effects models. Subgroup analyses were conducted considering surgery-related factors such as surgical techniques (one-jaw vs. two-jaw), use of the surgery-first approach, utilization of computer simulation, and analytical methods employed to evaluate asymmetry (2D vs. 3D). Results: Forty-nine articles met the inclusion criteria. The metaanalysis demonstrated a significant improvement in the symmetry of hard and soft tissues. The subgroup analysis indicated that the treatment outcomes showed significant improvement, regardless of the factors related to surgery. Changes in TMD signs and symptoms varied according to the surgical technique used. Quality of life improved in the facial, oral, and social domains. Skeletal relapse was observed during the follow-up. Conclusions: Our findings support the positive outcomes of orthognathic surgery in the treatment of facial asymmetry in terms of skeletal and soft tissue improvements, stability, relief of TMD symptoms, and enhancement of QoL. However, most of the included studies showed a low certainty of evidence and high heterogeneity.

Treatment efficacy of gingival recession defects associated with non-carious cervical lesions: a systematic review

  • Oliveira, Livia Maria Lopes de;Souza, Camila Agra;Cunha, Sinara;Siqueira, Rafael;Vajgel, Bruna de Carvalho Farias;Cimoes, Renata
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.91-115
    • /
    • 2022
  • Purpose: This systematic review aimed to compare the efficacy, defined in terms of the mean percentage of root coverage (mRC), of surgical treatment approaches combined with adhesive restorations of non-carious cervical lesions (NCCLs) to that of root coverage alone in patients with a single gingival recession (GR) and NCCL. Methods: A literature search was conducted to identify longitudinal studies reporting the mRC following treatment for the correction of GR defects associated with NCCLs using a combination of surgical and restorative techniques in systemically and periodontally healthy patients. Results: The search resulted in the retrieval of 12,409 records. Seven publications met the inclusion criteria for the qualitative synthesis of data. The mRCs ranged from 69% to 97%. In the medium term, the gingival margin position was more stable when a connective tissue graft (CTG) was used, independently of whether restoration of teeth with NCCLs was performed. Conclusions: The strength of the evidence was limited by methodological heterogeneity in terms of study design as well as the unit and period of analysis, which precluded a metaanalysis. Although no definitive conclusion could be drawn due to the lack of sufficient evidence to estimate the effectiveness of the interventions, CTG-based procedures contributed to gingival margin stability regardless of the performance of restoration to treat NCCLs.

Evaluation of Tissue Inhomogeneity for Gamma-knife Radiosurgery Using Film Dosimetry (감마 나이프 방사선 수술시 필름 선량 측정에 의한 조직 불균일성에 대한 연구)

  • Cho, Heung-Lae;Shon, Seung-Chang;Shu, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.325-335
    • /
    • 1998
  • Purpose : Since the mid cranial fossa is composed of various thickness of bone, the tissue inhomogeneity caused by bone would produce dose attenuation in cobalt-60 gamma knife irradiation. The correction factor for bone attenuation of cobalt-60 which is used for gamma knife source is -3.5$\%$. More importantly, nearly all the radiosurgery treatment planning systems assume a treatment volume of unit density: any perturbation due to tissue inhomogeneity is neglected, This study was performed to confirm the bone attenuation in mid cranial fossa using gamma knife. Materials and Methods : Computed tomography was performed after Leksell stereotactic frame had been liked to the Alderson Rando Phantom (human phantom) skull area. Kodak X-omat V film was inserted into two sites of pituitary adenoma point and acoustic neurinoma point, and irradiated by gamma knife with 14mm and 18mm collimator. An automatic scanning densitometer with a 1mm aperture is used to measure the dose profile along the x and y axis. Results : Isodose curve constriction in mid cranial fossa is observed with various ranges. Pituitary tumor point is greater than acoustic neurinoma point (0.2-3.0 mm vs 0.1-1.3 mm) and generally 14 mm collimator is greater than 18mm collimator (0.4-3.0 mm vs. 0.2-2.2 mm) Even though the isodose constriction is found, constriction of 50$\%$ isodose curve which is used for treatment reference line does not exceed 1 mm. This range is too small to influence the treatment planning and treatment results. Conclusion : Radiosurgery planning system of gamma knife does not show significant error to be corrected without consideration of bone attenuation.

  • PDF

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF