• Title/Summary/Keyword: Tissue Equivalent Phantom

Search Result 85, Processing Time 0.03 seconds

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF

An Experimental Study on the Effect of Combined X-ray and Microwave Hyperthermia on the Rectum and Urinary Bladder of Rats (흰쥐의 직장과 방광에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.115-128
    • /
    • 1986
  • Hyperthermia can enhance the radiation effect as a synergistic reaction in combined X-ray irradiation and hyperthermia; hyperthermia sensitize radioresistant S-phase cells and inhibit cellular recovery from sublethal damage. We fabricated 100 watts, 2450 MHz microwave applicator for hyperthermia and planned the method and condition of heating and measured the temperature by using Agar phantom as a preliminary test. For biological examination, 102 rats were divided into 4 groups as hyperthermia, X-ray irradiation (6Gy-15Gy), combined X-ray and hyperthermia, and normal control groups. Microscopic examination of the rectum and bladder was done and the results were as followings: 1. The microwave generator with 100 watts, 2450MHz magnetron could be heating up to $40^{\circ}{\sim}50^{\circ}C$ for one hour in living tissue. 2. The thermal distribution in tissue equivalent phantom with microwave can be maintained at $40^{\circ}{\sim}44^{\circ}C$ in area of 3cm in depth and 2-10cm in diameter. 3. In Hyperthermia alone group, there was submucosal edema of the rectum but no histologic change in the urinary bladder was seen. 4. The minimal necrosis of the mucosa was appeared in the rectum and bladder after 15 days of 6 Gy and 8 Gy irradiation respectively. The minimal necrosis of the muscle layer of rectum and bladder was appeared after 15 days of 8Gy and 60days of 10Gy irradiation respectively. 5. In combined group of radiation and hyperthermia, thermal enhancement ratio (calculated at necrosis of mucosa and muscle layer) of rectum and bladder was 1.0, and it suggest that there is no change of tolerance dose of normal rectum and bladder.

  • PDF

The Effects of the CT Voltages on the Dose Calculated by a Commercial RTP System (CT 관전압이 상용 전산화치료계획장치의 선량계산에 미치는 영향)

  • 강세권;조병철;박희철;배훈식
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • The relationship between the dose calculated with a radiotherapy treatment planning system (RTPS) and CT number verses the relative electron density curve was investigated for various CT voltages and beam qualifies. We obtained the relationship between the CT numbers and electron densities of the tissue equivalent materials for various CT voltages and beam qualifies. At lower CT voltages, the higher density materials, like cortical bone, showed larger CT numbers and the soft tissues showed no variations. We peformed a phantom study in a RTPS, where a phantom consisted of lung and bone legions in water. We calculated the dose received behind the lung and bone regions for 6 MV photon beams, in which the regions below the lung, water and bone received higher doses in this listed order. The result was the same for 10 MV photon beams. For the clinical application, the doses were calculated for the lung and pelvis. No difference was observed when using different electron density conversion tables with various CT voltages from a same CT. A relative dose difference of 1.5% was obtained when the CT machine for the density conversion table was different from that for the CT image for planning.

  • PDF

Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR) (Digital Radiography(DR)에서 검출기의 X선 조건에 따른 흡수선량 및 영상화질 변화에 관한 연구)

  • Hwang, Jun-Ho;Jeong, Jae-Ho;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.99-106
    • /
    • 2017
  • This study focused on the issue that when a diagnostic detector is found to have a defect, a patient would be exposed to radiation and image quality would be degraded. Though dose analysis, an experiment was conducted to evaluate detector performance as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Absorbed dose, SNR and CNR were measured using a dosimeter and a tissue equivalent phantom. The experiment was conducted to compare whether the dose value shown after being attached to the back side of the phantom matches the dose value attached behind the detector, where in the conditions of skull, chest and abdomen were set at 75 kVp, 25 mAs, 110 kVp, 8 mAs, and 80 kVp, 20 mAs, respectively. As a result, there was a difference in that the dose values attached to the back side of the detector were 0.004 mGy, 0.006 mGy, 0.003 mGy, whereas those of the back side of the phantom were 0.006 mGy, 0.016 mGy, 0.017 mGy. In order to match both values, the condition was increased and SNR and CNR also increased from 88.32, 88.10, 4.09, 1.63, 87.94, 79.97 to 93.87, 93.75, 4.91, 4.03, 92.02, 84.92. Though this study, we found that when a detector is found to have a aging, it shortens the life of equipment and increases the dose of a patient, also the improvement effect of image quality is inadequate.

Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography (복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향)

  • Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

A Study on the Probability of Secondary Carcinogenesis during Gamma Knife Radiosurgery (감마나이프 방사선 수술시 2차 발암 확률에 관한 연구)

  • Joo-Ah, Lee;Gi-Hong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.843-849
    • /
    • 2022
  • In this study, the probability of secondary carcinogenesis was analyzed by measuring the exposure dose of surrounding normal organs during radiosurgery using a gamma knife. A pediatric phantom (Model 706-G, CIRS, USA) composed of human tissue-equivalent material was set to four tumor volumes of 0.25 cm3, 0.51 cm3, 1.01 cm3, and 2.03 cm3, and the average dose was 18.4 ± 3.4 Gy. After installing the Rando phantom on the table of the gamma knife surgical equipment, the OSLD nanoDot dosimeters were placed in the right eye, left eye, thyroid, thymus gland, right lung, and left lung to measure each exposure dose. The probability of cancer occurrence due to radiation exposure of surrounding normal organs during gamma knife radiosurgery for acoustic schwannoma disease was 4.08 cancers per 100,000 at a tumor volume of 2.03 cm3. This study is expected to be used as useful data in relation to stochastic effects in the future by studying the risk of secondary radiation exposure that can occur during stereotactic radiosurgery.

The Effects of a Thyroid Shield Made of a Tissue-Equivalent Material on the Reduction of the Thyroid Exposure Dose in Panoramic Radiography (파노라마촬영 시 조직등가물질을 이용한 갑상선보호대의 갑상선피폭선량 감소효과)

  • Lee, Hye-Lim;Kim, Hyun-Yung;Choi, Hyung-Wook;Lee, Hye-Mi;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2278-2284
    • /
    • 2012
  • Exposure-dose reducing effect was measured by using bolus, a tissue-equivalent material as a shield to obtain useful diagnostic images while minimizing the radiation exposure of thyroid which is highly sensitive to radiation during panoramic radiography. The experiment was performed within the period of 1 June 2001 through 30 June 2011 by measuring entrance surface dose and deep dose at the thyroid-corresponding site of a head and neck phantom. As a result, the entrance surface dose in the thyroid for using no shield was 43.84 ${\mu}Gy$ on the average, and the thyroid shield of bolus 10 mm in thickness reduced the dose by 15.45 ${\mu}Gy$(35.24%) to 28.39 ${\mu}Gy$ on the average. The use of a 20 mm thyroid shield resulted in the dose of 25.38 ${\mu}Gy$ on the average, a 18.46 ${\mu}Gy$(42.10%) drop from 43.84 ${\mu}Gy$ for using no shield. On the site 20 mm below the surface, a thyroid shield 10 mm in thickness had no dose-reducing effect, while a 20 mm thyroid shield reduced the dose by 0.06 mSv(20%).

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Dosimetric Comparison of Radiation Treatment Techniques for Breast Cancer : 3D-CRT, IMRT and VMAT (유방암 방사선치료 기법에 따른 선량 비교 : 3차원 입체조형치료, 세기 변조 방사선치료, 입체세기조절회전 방사선치료)

  • Lee, Bo-Ram;Lee, Sun-Young;Yoon, Myong-Geun
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • The purpose of this study is to compare method in the treatment of breast cancer using dose index. And, it is to find the optimized treatment technique to the patient. The phantom filled with tissue-equivalent material were used simulation and treatment as techniques of 3D-CRT, IMRT, VMAT was planned using Eclipse v10. By using HI(homogeneity index), CI(Conformity index), OED(Organ equivalent dose), EAR(Excess Absolute Risk), were assessed for each treatment plans. HI and CI of 3D-CRT, IMRT, VMAT were calculated 16.89, 11.21, 9.55 and 0.59, 0.61, 0.83. The organ average doses of Lt lung, Rt lung, liver, heart, esophagus, cord, Lt breast, trachea and stomach were 0.01 ~ 2.02 Gy, 0.36 ~ 5.01 Gy, 0.25 ~ 2.49 Gy, 0.14 ~ 6.92 Gy, 0.03 ~ 2.02 Gy, 0.01 ~ 1.06 Gy, 0.25 ~ 6.08 Gy, 0.08 ~ 0.59 Gy, 0.01 ~ 1.34 Gy, respectively. The OED, EAR of the IMRT and VMAT show higher than 3D-CRT. As the result of this study, we could confirm being higher dose index(HI, CI) in IMRT and VMAT than 3D-CRT, but doses of around normal organs was higher IMRT, VMAT than 3D-CRT.