• 제목/요약/키워드: Tire Model

검색결과 308건 처리시간 0.024초

주행로봇 제어를 위한 험지의 최대마찰계수 추정 (Estimation of the Maximum Friction Coefficient of the Rough Terrain to Control the Mobile Robots)

  • 강현석;곽윤근;최현도;정해관;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1062-1072
    • /
    • 2008
  • When mobile robots perform the mission in the rough terrain, the traversability depended on the terrain characteristic is useful information. In the traversabilities, wheel-terrain maximum friction coefficient can indicate the index to control wheel-terrain traction force or whether mobile robots to go or not. This paper proposes estimating wheel-terrain maximum friction coefficient. The existing method to estimate the maximum friction coefficient is limited in flat terrain or relatively easy driving knowing wheel absolute velocity. But this algorithm is applicable in rough terrain where a lot of slip occurred not knowing wheel absolute velocity. This algorithm applies the tire-friction model to each wheel to express the behavior of wheel friction and classifies slip-friction characteristic into 3 major cases. In each case, the specific algorithm to estimate the maximum friction coefficient is applied. To test the proposed algorithm's feasibility, test bed(ROBHAZ-6WHEEL) simulations are performed. And then the experiment to estimate the maximum friction coefficient of the test bed is performed. To compare the estimated value with the real, we measure the real maximum friction coefficient. As a result of the experiment, the proposed algorithm has high accuracy in estimating the maximum friction coefficient.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

디지털 조선소 구축 및 활용을 위한 모델링 및 시뮬레이션 프레임워크 구축 방법론 (Simulation Modeling Methodology and Simulation Framework for a Construction of a Digital Shipyard)

  • 우종훈;오대균;권영대;신종계;서주노
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.411-420
    • /
    • 2005
  • World leading company and research centers have invested much cost and effort into a PLM and digital manufacturing field to obtain their own competitiveness. We have been trying to apply a digital manufacturing, especially simulation to ship production process as a part of PLM implementation for a shipyard. A shipbuilding production system and processes have a complexity and a peculiarity different from other kinds of production systems. So, new analysis and modeling methodology is required to implement digital shipyard. which is a digital manufacturing system for a shipbuilding company. This paper suggests an analysis and simulation modeling methodologies for an implementation of a digital shipyard. New methodologies such as a database-merged simulation, a distributed simulation, a modular simulation with a model library and a 3-tire simulation framework are developed.

비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계 (Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior)

  • 권상영;김형태;하성규
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.234-242
    • /
    • 2002
  • A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

전차륜 독립휠 구동 및 조향 제어 기반 특수목적용 6WD/6WS 차량의 주행제어 알고리즘 연구 (A Study on Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles)

  • 이대옥;여승태
    • 한국군사과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.240-249
    • /
    • 2013
  • This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving, steering, vehicle stability, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink dynamics model and experiments using HIL simulator mounting the real controllers with the designed control algorithms prove the improved performances in terms of vehicle stability and maneuverability.

바이모달트램 안내제어기의 강인성 평가 (Evaluations of the Robustness of Guidance Controller for a Bimodal Tram)

  • 윤경한;이용상;민경득;김영철;변윤섭
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1924-1934
    • /
    • 2011
  • This paper is concerned with the robustness evaluations of the guidance controller for a bimodal tram which is being developed by the Korea Railroad Research Institute (KRRI). The bimodal tram is an all-wheel steered multiple-articulated vehicle as a new kind of transportation vehicle. This vehicle has to be equipped with an automatic guidance system. In [1], such a controller has been recently proposed. However, since the performance is affected by weight change of the vehicle due to number of the passenger, model parameter uncertainties depending on the state of friction and the elasticity of the tire, and a typhoon, the controller designed must be examined with these conditions. As expected, because the vehicle dynamics is highly nonlinear, for the sake of investigating the robustness of the controller we compose two simulation ways based on the vehicle models which are implemented by the ADAMS and the MATLAB/LabVIEW toolboxes. Different uncertainties and a typhoon disturbance have been considered for the simulation conditions. Simulation results are shown.

C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발 (Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm)

  • 박명욱;문희창;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • 노연 후 콩;김준홍;이희섭
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험 (Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment)

  • 홍경태;허창도;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

6WD/6WS 군용차량의 동역학적 성능해석 (Dynamic Performance Analysis for 6WD/6WS Armored Vehicles)

  • 홍재희;김준영;허건수;장경영;오재응
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.155-166
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation tool using the MATLAB /SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

  • PDF