• Title/Summary/Keyword: Tire Model

Search Result 313, Processing Time 0.021 seconds

A Prediction of Sound Radiation from Tire Treadband Vibration (타이어 트레드밴드 진동 음향방사 예측)

  • Byoung-Sam Kim;Seong-Gon Cho
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 1997
  • The noise generated from a treadband mechanism of a tire has been the subject of this research. In particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation which includes damping. The main objective is to predict the sound power generated from a system mentioned above by locating harmonic point forces representing the excitation of treadband at the contact patch. It is possible to predict the sound power radiated from this structure by using wavenumber transformation techniques. In order to find out the minimum radiated sound power, All parameters were varied. Thus, this model can be used as a tire design guide for selecting parameters which produces the minimum noise radiation.

  • PDF

The Prediction of Rubber Friction considering Road Characteristics (노면 특성을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • This paper presents the hysteresis friction of a sliding elastomer on various types of surfaces. The hysteresis friction is calculated by means of an analytical model which considers the energy spent by the local deformation of the rubber due to surface asperities. By establishing the fractal character of the surfaces, the contribution to rubber friction of roughness at different length scales is accounted for. High resolution surface profilometer is used in order to calculate the main three surface descriptors and the minimal length scale that can contribute to hysteresis friction. The results show that this friction prediction can be used in order to characterize in an elegant manner the surface morphology of various surfaces and to quantify the friction coefficient of sliding rubber as a function of surface roughness, load and speed.

A Study on the Thernal Conductivity Characteristics of Discarded Tire Powder-Soil Mixture (폐타이어 파우더 혼합토의 열전도율 특성에 관한 연구)

  • Kim, Hak-Sam;Seo, Sang-Youl;NakamuRa, Dai;Yamashita, Satoshi;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.27-36
    • /
    • 2010
  • Thermal conductivities using the thermal probe method were determined for frost susceptible soil with three types of discarded tire powder under the condition of a temperature variation from $-20^{\circ}C{\sim}+10^{\circ}C$. Also, the amount of unfrozen water contents was measured by the pulsed NMR method. The variation of unfrozen water content in the experimental condition could be expressed as a function of temperature given by an exponential equation. A new model for calculating the thermal conductivity of frozen soil was proposed. It is extended from the two element method and subdivided into three constituent elements.

An Empirical Study on the Determinants of Customer Renewal Behavior for Tire Rental Servitization (제조기업의 서비스화 제공 형태와 고객 특성이 재계약에 미치는 요인에 관한 실증 연구: 타이어 렌탈 중심으로)

  • Hyun, Myungjin;Kim, Jieun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.508-517
    • /
    • 2020
  • Servitization presents an innovative model to create business value in the automotive industries. This study set out to introduce a servitization model based on the rental business of the tire industry and identify determinants to affect the renewal of contracts around the service types of servitization and the characteristics of customers. Independent variables include the service types, demographics and regions, and inflow channels in 163,742 contracts by case companies in the nation in 2016~2019 with the renewal of contracts as a dependent variable. Correlations between variables were analyzed through cross-tabulation and binary logistic regression analysis. The findings show that the contract renewal rate had positive(+) relations with customized service and negative(-) ones with vehicle maintenance service. There were differences in the contract renewal rate according to such customer characteristics as gender and region, but no clear correlations were found in the age group and vehicle type(domestic/foreign). Of the inflow channels, offline channels tended to have a higher renewal rate than online channels. At open malls, contract renewal increased by 8.4 times due to contract switches at offline channels. Based on these findings, the study discussed directions for practical strategies with regard to the development of new service, implementation of customer-centric servitization, and management of sales channels according to the servitization of manufacturers.

An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation (차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증)

  • 배상우;윤중락;이장무;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

An Study on Vibration Characteristics of Automobile Al-alloy Wheel (자동차 알루미늄 합금 휠의 진동특성에 관한 연구)

  • Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • The styling of automobile wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The vibration characteristics of a automobile wheel play an important role to judge a ride comfort and quality for a automobile. In this paper, the vibration characteristics of a Al-alloy and steel wheel for automobile are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

An Experimental Study on Vibration Characteristics of AI-alloy Wheel for Passenger Car (자동차용 알루미늄 합금 휠의 진동특성에 관한 실험적 연구)

  • Kim, Byoung-Sam;Chi, Chang-Hun;Mun, Sang-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.623-628
    • /
    • 2001
  • The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

  • PDF

Development of a Simulation Tool for the Cornering Performance Analysis of 4WD/4WS Vehicles (4륜구동.조향 차량의 선회 성능 해석을 위한 Simulation Tool 개발)

  • 계경태;김준영;허건수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.195-206
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steadystate cornering performance of 4WD/4WS vehicles. The 4WD/4WS vehicles are modeled as a 8-th order dynamic system which includes complex non-linear vehicle dynamics and tire models. The vehicle models are constructed into a modulated simulation tool and are utilized for analyzing cornering performance such as combined braking and steering, cornering on the icy read and $\mu$-split braking, The whole analysis is done with the simulation tool which consists of a number of subsystems and offers graphic environment. Simulation results show that this tool is useful and cost-effective in the dynamic analysis of the combustion-engine vehicles as well as electrically driven vehicles.

  • PDF