• 제목/요약/키워드: Tire Durability

검색결과 61건 처리시간 0.029초

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Vulcanizate Structures of NR Compounds with Silica and Carbon Black Binary Filler Systems at Different Curing Temperatures

  • Kim, Il Jin;Kim, Donghyuk;Ahn, Byungkyu;Lee, Hyung Jae;Kim, Hak Joo;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권1호
    • /
    • pp.20-31
    • /
    • 2021
  • There is an increasing demand for the rolling resistance reduction in truck bus radial (TBR) tires in the tire industry. In TBR tires, natural rubber is used as a base polymer to prevent wear and satisfy required physical properties (cut and chip). A binary filler system (silica and carbon black) is used to balance the durability of the tire and rolling resistance performance. In this study, natural rubber (NR) compounds applied with a binary filler system were manufactured at different cure temperatures for vulcanizate structure analysis. The vulcanizate structures were categorized into carbon black bound rubber, silica silane rubber network, and chemical crosslink density by sulfur. Regardless of the cure temperature, the cross-link density per unit content of carbon black had a greater effect on the properties than silica due to affinity with NR. The relationship analysis between the mechanical, viscoelastic properties with vulcanizate structure could be a guideline for manufacturing practical TBR compounds.

해안매립지에 위치한 콘크리트구조물의 염해조사 (Investigation of Salt Attack of Concrete Structures Exposed to Reclaimed Marine Land)

  • 김성수;정란;김영웅;김용철;박광필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.835-840
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus tire deteriorated concrete is subject to experience severe degrading of durability under marine environment. In this study, concrete structures exposed to reclaimed marine land wet-e investigate to find out the salt attack along with analysis and review of it's cause. Under the reclaimed marine land, the main causes of deterioration of concrete structures is the steel corrosion due to the Penetration of chlorides and the deterioration of outer concrete itself by chemical attack.

  • PDF

골재노출 콘크리트의 소음 저감 특성에 대한 연구 (A Study on the Properties of Noise Reduction on the Exposed Aggregate Concrete)

  • 문한영;하상욱;양은철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.119-124
    • /
    • 2002
  • Generally, Portland cement concrete(PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, It is known that PCC pavements create more noise than asphaltic surfaces due to the noise from interaction of tire and pavement surface. Recently exposed aggregate concrete(EAC) pavement was sugested to reduce traffic noise. So in this paper, we considered several materials and mixture proportions for proper depth of exposed aggregate which was measured by the sand patching test, and then according to those relationships, we tried to find out dosage of retarding agents and optimum mixture proportions for expecting good effects to noise reduction. It were also evaluated sound level at every conditions of surface texture as like depth of aggregate exposed, profile peak, distance of aggregate and types of aggregate.

  • PDF

전기자동차 구동용 In-wheel type IPMSM 설계 (Design considerations of IPMSM for in-wheel type electric vehicle)

  • 이병화;김성일;이정종;권순오;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.873_874
    • /
    • 2009
  • This paper presents a method for designing a high power motor that is applicable to electric vehicles. Interior Permanent Magnet (IPM) type motor which has high efficiency and high durability is selected. To apply for the electric vehicles, a form, a tire and a wheel of vehicles are considered when calculating a motor performance. After calculating a motor performance, space harmonic analysis and FEA(Finite Element Analysis) is used for designing In-Wheel motor.

  • PDF

Steel Cord 선재의 판류응력 평가 및 완화에 관한 연구 (The Evaluation and Relaxation of Residual Stress of Steel Cord)

  • 이상곤;황원호;김병민;배철민;이충열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.191-194
    • /
    • 2006
  • Recently the quality improvement of the steel cord product is demanded by the tire market. After wire drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the drawn wire, it is important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the drawn wire. This study proposed a residual stress relaxation method in the drawn wire using FE analysis. The validity of the analysis results was verified by nanoindentation test.

  • PDF

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

Influence of Exposed Aggregate Texturing on the Reducing Traffic Noise Emission

  • Han-Young, Moon;Sang-Wook, Ha;Eun-Cheol, Yang
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1067-1070
    • /
    • 2003
  • The effects of traffic noise are a serious concern in many urban communities throughout the world. Environmental noise at high intensities directly affects human health by causing hearing loss and indirectly affects human welfare by interfering with sleep, thought, and conversation. In general, portland cement concrete(PCC) pavement is known to create more noise than asphaltic surfaces though it has the advantage of durability and superior surface. However, the results of preliminary laboratory test showed exposed aggregate concrete(EAC) have an effect on reducing traffic noise. Based on the laboratory test, pilot construction of exposed aggregate concrete was performed and series of in-situ measurements were conducted for noise analysis which included the pass-by noise measurement and the close-proximity method. Conclusively, It is expected that tire/pavement noise which is represented much noise levels at higher frequencies would be significantly reduced on special textures of pavement as like exposed aggregate concrete.

  • PDF

평직 CFRP 복합재료의 충격잔류강도 평가 (Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites)

  • 최정훈;강민성;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발 (Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin)

  • 박석균
    • 콘크리트학회논문집
    • /
    • 제19권5호
    • /
    • pp.623-630
    • /
    • 2007
  • 주로 교량 슈 (shoe)나 기계 기초 등과 하부 콘크리트 구조체간의 공극을 충전시켜 상부 구조물과 하부 구조물을 일체화하는데 사용되는 그라우트재는 구조물의 특성상 주로 큰 하중을 받는 부위에 시공되기 때문에 높은 압축강도를 갖는 제품 위주로 개발 사용되어 왔다. 그러나 고강성 위주로 제품이 개발되어 한계응력 이상에서는 구조체가 갑자기 파괴되는 취성체라는 구조적 문제점을 안고 있고, 연속 및 반복하중 등의 응력에 의한 누적 피로에 의해 균열 등의 성능 저하 현상이 발생할 수 있다 또한, 초기 고강도를 유지하기 위해 발열 특성이 높은 속경성 재료를 과다하게 사용함으로써 대형 부재인 경우 수화열 등에 의한 균열발생 우려의 문제 등도 안고 있다. 본 연구는 이와 같은 문제들을 개선하기 위해, 탄성재료인 분말 폐타이어 및 분말 수지를 이용하여 기존의 고유동, 무수축, 고강도 특성 이외에 고인성과 고내구성을 부여하여 보다 안정적으로 시공될 수 있으며, 모체와의 일체성을 향상시키기 위한 그라우트재의 분체 조성물을 개발하였다 또한, 부수적으로 분말 폐타이어 및 플라이애쉬와 같은 산업폐기물을 재활용할 수 있도록 하여 환경친화적인 건설 재료를 제공하는 데에도 기여하였다. 이를 위해 총 7가지 배합 조건별 실험이 진행되었고, 이를 통해 최적 배합 조건을 선정하였다.