• Title/Summary/Keyword: Tire Durability

Search Result 61, Processing Time 0.031 seconds

A Study on the Design of Automotive Tire Profile for High Speed Durability Improvement (고속내구성 향상을 위한 자동차용 타이어 프로파일의 설계연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.135-142
    • /
    • 1997
  • New approach to determine thd design of automotive tire profile was introduced. In this study, design technology for tire profile was combined with a finite element method to improve high speed durability. Static and dynamic behavior analysis of new concept tire was compared with conventional tire profile. To obtain the improved tire performance, appropriate design values, ie. design methodology, section profile selection, material properties, are needed.

  • PDF

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

Correlation Study on Tire Belt Adhesion Properties and Durability Performance (타이어의 벨트 부착력과 내구성능 간의 상관성 연구)

  • Hong Seungjun;Lee Hoguen
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.804-808
    • /
    • 2005
  • A pneumatic tire is made up of many flexible filaments of high modulus cord of natural textile, synthetic polymer, glass fiber, or fine hard drawn steel embedded in and bonded to a matrix of low modulus polymetric material. Adhesion property of these materials is very important in tire durability safety because belt-leaving-belt tread separation reduces the ability of a driver to control a vehicle, whether or not the separation is accompanied by a loss of air. In this study adhesion test of carcass-belt-tread is conducted on material properties of 5 PCR tire model, which are on sale in domestic market and analyzed adhesion properties. For those tire models FMVSS 109 indoor high speed durability test is conducted to analyze the correlation between adhesion force and high speed performance of tires and found the correlation between the two test results.

Optimal Design of Tire Sidewall Contour using Neural Network (신경회로망을 활용한 타이어 측벽형상의 최적설계)

  • Jeong, H.S.;Shin, S.W.;Cho, J.R.;Kim, N.J.;Kim, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.378-383
    • /
    • 2001
  • In order to improve automobile maneuverability and tire durability, it is very important for one to determine a suitable sidewall contour producing the ideal tension and strain-energy distributions. In order to determine such a sidewall contour, one must apply multi-objective optimization technique. The optimization problem of tire carcass contour involves several objective functions. Hence, we execute the tire contour optimization for improving the maneuverability and the tire durability using satisficing trade-off method. And, the tire optimization also requires long cup time for the sensitivity analysis. In order to resolve this numerical difficulty, we apply neural network algorithm.

  • PDF

Optimal Design of Tire Sidewall Contours for Improving Maneuverability and Durability (조정성과 내구성 향상을 위한 타이어 측벽형상 최적설계)

  • Jo, Jin-Rae;Jeong, Hyeon-Seong;Lee, Hong-U;Kim, Nam-Jeon;Kim, Gi-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1636-1643
    • /
    • 2001
  • Automobile maneuverability and tire durability are significantly influenced by the sidewall tire contour. In order to improve these tire performances, it is very important far one to determine a sidewall contour producing the ideal tension and strain-energy distributions. However, these requirements can nut be simultaneously achieved by conventional non-interactive multi-objective optimization methods based on mathematical programming, because these exhibit the conflicting behavior each other, with respect lo the sidewall contour. Therefore, we execute the tire contour optimization fur improving the maneuverability and the tire durability using satisficing trade-off method.

Optimal Design Methodology of Automotive Tire Profile (자동차용 타이어 단면형상의 최적설계 방법론)

  • Hwang, Jun;Namgung, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.896-900
    • /
    • 1996
  • New approach to determine the optimal design of automotive tire profile was introduced. In this study, optimal design technology was combined with a finite element method. Through tire profile optimization, tire profile was obtained and its profile improved high speed durability and maneuverability Static and dynamic behavior analysis of new concepted tire was compared with conventional tire profile. Optimal design methodology will provide much informations to improve various tire performances.

  • PDF

Development of GUI-based Program for Optimum Design of Double-ply Tire Sidewall Contour (Double-ply로 구성된 타이어 측벽형상 최적설계를 위한 GUI기반 프로그램 개발)

  • Shon, Jung-Sam;Cho, Jin-Rae;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.525-530
    • /
    • 2004
  • In this paper, the optimum design of tire sidewall contour consisted of double plies for improving automobile maneuverability and tire durability is considered and a GUI program is developed for the purpose of the practical design. Each improvement of maneuverability and durability depends on the cord tension and strain energy distribution of tire sidewall. Satisfing trade-off method, which requires the judgment of aspiration levels, is used for the multi-objective optimization problem. Also, this paper presents the application to the practical sidewall contour design with the GUI program developed using visual Fortran.

  • PDF

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Study of Aging and Durability on Plasma Polymerized Tire Cords (플라즈마 중합 코팅된 타이어 코드의 노화에 따른 접착력 변화 연구)

  • Kang, H.M.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • Steel tire cords were subjected to plasma polymerization coating of acetylene in order to enhance the adhesion to rubber compounds. Plasma polymerization coating was varied to plasma polymerization coating of acetylene, argon plasma etching+plasma polymerization, or argon plasma. etching+plasma polymerization with Ar carrier gas. Adhesion was evaluated via TCAT samples and compared to those with brass coated tire cord. For durability study, plasma polymer cooled tire cords were aged in lab atmosphere for 1, 3, 5, 10 or 15 days, while TCAT specimens prepared with plasma polymer coated tire cords were aged in distilled water, 10% NaCl solution or $100^{\circ}C$ oven for 1, 2, 3 or 4 weeks. After testing, failure surfaces were analyzed with SEM/EDX. Among the treatments, the highest adhesion was obtained by Ar etching+acetylene plasma. polymerization coating with Ar carrier gas, providing almost same pull-out force as the brass coated tire cords. Upon the aging of the tire cords in the lab atmosphere, brass coated tire cords provided better adhesion than plasma polymer coated tire cords, while the TCAT samples with plasma polymer coated tire cords exhibited similar or slightly superior durability to those with brass coated tire cords.

  • PDF

Experimental study on the deformation property of pneumatic tires - strain gauge method (실험적 방법에 의한 Tire 변형 특성 연구)

  • Kang, S.C.;Ku, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.716-721
    • /
    • 2001
  • The present study describes the experimental method to measure the strain of tire. In this study. the strain distributions of tire with air pressure and vertical load were measured at the bead filler edge region and on the carcass cord using strain gauges and the results were compared with indoor bead durability test results. The strain amplitude of carcass cord near the rim check line of tire is one of the main factors that affects bead durability characteristic.

  • PDF