• Title/Summary/Keyword: Tip transcription

Search Result 12, Processing Time 0.029 seconds

Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60

  • Shen, Lei;Lee, Soon;Joo, Jong Cheon;Hong, Eunmi;Cui, Zhen Yang;Jo, Eunbi;Park, Soo Jung;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.493-503
    • /
    • 2022
  • Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.

Effects of Ser2 and Tyr6 Mutants of BAF53 on Cell Growth and p53-dependent Transcription

  • Lee, Jung Hwa;Lee, Ji Yeon;Chang, Seok Hoon;Kang, Mi Jin;Kwon, Hyockman
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.289-293
    • /
    • 2005
  • BAF53 is an actin-related protein that shuttles between nucleus and cytoplasm. In the nucleus, it constitutes an integral component of many chromatin-modifying complexes such as the SWI/SNF, TIP60, TRRAP, and TIP48/49 complexes. BAF53 is essential for growth, but its function remains elusive. BAF53 homologues from yeast to humans have a conserved N-terminal motif, MS_(G/A)(G/A)__(V/L)YGG, which is unique to these proteins. Previously we showed that over-expression of an N-terminal deletion mutant of BAF53 ($BAF53_-{\Delta}N$) reduced the viability of HEK293 and HeLa cells. When we replaced the serine 2 and tyrosine 6 of this N-terminal motif with alanine, over-expression of the alanine-replaced BAF53 strongly impaired the growth of HEK293 cells whereas replacement with aspartate/glutamate had no effect. The alanine-replaced BAF53 mutants also stimulated p53-dependent transcription, in which the SWI/SNF and TRRAP complexes are involved. Our results demonstrate that serine 2 and tyrosine 6 play important roles in BAF53 activity.

Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of Barley Yellow Dwarf Virus in Oat

  • Kim, Na-Kyeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.497-502
    • /
    • 2020
  • Barley yellow dwarf virus (BYDV) is an economically important plant pathogen that causes stunted growth, delayed heading, leaf yellowing, and purple leaf tip, thereby reducing the yields of cereal crops worldwide. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of BYDV in oat leaf samples. The RT-RPA assay involved incubation at an isothermal temperature (42℃) and could be performed rapidly in 5 min. In addition, no cross-reactivity was observed to occur with other cereal-infecting viruses, and the method was 100 times more sensitive than conventional reverse transcription polymerase chain reaction. Furthermore, the assay was validated for the detection of BYDV in both field-collected oat leaves and viruliferous aphids. Thus, the RT-RPA assay developed in the present study represents a simple, rapid, sensitive, and reliable method for detecting BYDV in oats.

Eliminating Potato Virus Y (PVY) and Potato Leaf Roll Virus (PLRV) Using Cryotherapy of in vitro-grown Potato Shoot Tips

  • Yi, Jung-Yoon;Lee, Gi-An;Jeong, Jong-Wook;Lee, Sok-Young;Lee, Young-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Potato virus Y (PVY) and potato leafroll virus (PLRV) are among the most damaging potato viruses and prevalent in most potato growing areas. In this study, cryopreservation was used to eradicate PVY and PLRV using two cryogenic methods. Potato shoot tips proliferated in vitro were cryopreserved through droplet-vitrification and encapsulation-vitrification using plant vitrification solution 2 (PVS2; 30% glycerol + 15% dimethyl sulfoxide + 15.0% ethylene glycol + 13.7% sucrose) and modified PVS2. Both cryogenic procedures produced similar rates of survival and regrowth, which were lower than those from shoot tip culture alone. The health status of plantlets regenerated from shoot tip culture alone and cryopreservation was checked by reverse transcription-polymerase chain reaction. The frequency of virus-free plants regenerated directly from highly proliferating shoot tips reached 42.3% and 48.6% for PVY and PLRV, respectively. In comparison, the frequency of PVY and PLRV eradication after cryopreservation was 91.3~99.7% following shoot-tip culture. The highest cryopreserved shoot tip regeneration rate was observed when shoot tips were 1.0~1.5 mm in length, but virus eradication rates were very similar (96.4~99.7%), regardless of shoot tip size. This efficient cryotherapy protocol developed to eliminate viruses can also be used to prepare potato material for safe long-term preservation and the production of virus-free plants.

Hippo-YAP/TAZ signaling in angiogenesis

  • Park, Jeong Ae;Kwon, Young-Guen
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.157-162
    • /
    • 2018
  • Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.

Molecular Characterization and Expression Pattern of Na+-K+-2Cl- Cotransporter 2 (NKCC2) in the Intestine of Starry Flounder Platichthys stellatus after Bacterial Challenge

  • Kim, Yi Kyung;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • We identified the $Na^+-K^+-2Cl^-$ cotransporter 2 (NKCC2) cDNA isoform from starry flounder, Platichthys stellate. The NKCC2 cDNA encoded a polypeptide of 1,043 amino acids representing 12 putative transmembrane domains based on the bioinformatic topology prediction. In addition, starry flounder NKCC2 possessed highly conserved residues within transmembrane domain 4, known as an essential site for its function. End-point reverse transcription-polymerase chain reaction analysis revealed that the NKCC2 transcript was moderately expressed only in the anterior and posterior intestines and the rectum. The NKCC2 mRNA level in the rectum, but not in other segments, was significantly induced 3 days post Streptococcus parauberis challenge, indicating that excess salt may be transported into the rectum. Taken together, our data indicate that an S. parauberis infection could tip the intestinal fluid balance in favor of fluid accumulation, indicating that bacterial pathogens can interfere with intestinal osmotic balance and normal mucosal immune homeostasis.

Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement (고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정)

  • Choi, Sung-Ju;Yoo, Young-Eun;Kim, Sun-Kyoung
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Characterization of Cucumver mosaic virus Isolated from Hydrangea macrophylla for. otaksa (Sieb. et Zucc) Wils. (수국에서 분리한 Cucumber mosaic virus의 특성)

  • 방주희;박선정;이금희;최장경;이상용
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • An isolate of Cucumber mosaic cucumovirus(CMV) was isolated from Hydrangea macrophylla for. otaksa(Sieb. et Zucc. ) Wils. showing mosaic symptoms, and designated as Hm-CMV. Hm-CMV was characterized by the tests of host range, physical properties, serological properties, RNA and coat protein compositions, and reverse transcription and polymerase chain reaction (RT-PCR) analysis. Twelve species in 4 families were used in the host range test of Hm-CMV and could be differentiated from Y-CMV used as a control CMV by the ringspot and line pattern on inoculated leaves of several tobacco plants. Thevirus produced local lesions on inoculated leaves of Chenopodium amarticolor, C. quinoa and Vigna unguiculata. The physical properties of the virus were as follows; thermal inactivation point(TIP) was 60$\^{C}$, dilution end point (DEP) was 10$\^$-3/, and longevity in vitro (LIP) was 3∼4 days. Hm-CMV was serologically identical to Y-CMV. SDS-polyaciylamide gel electrophoresis(SDS-PAGE) showed one major protein band of about 28 kDa. In RNA or dsRNA analysis, Hm-CMV consisted of four RNA or dsRNA species, but satellite RNA was not detected. In RT-PCR using CMV-common primer and CMV subgroup I-specific primer, bothe amplified expected size of about 490 bp and 200 bp DNA fragments from Hm-CMV, respectively. Restriction enzyme analysis of the 490 bp RT-PCR products using EcoR I and Msp I showed that Hm-CMV belonged to CMV subgroup I. However, Hm-CMV could be differentiated from other CMV subgroup I isolates by RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP-PCR).

  • PDF