References
- Herbert SP and Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12, 551-564
- Potente M, Urbich C, Sasaki K et al (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115, 2382-2392 https://doi.org/10.1172/JCI23126
- Birdsey GM, Dryden NH, Amsellem V et al (2008) Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111, 3498-3506 https://doi.org/10.1182/blood-2007-08-105346
- Felcht M, Luck R, Schering A et al (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122, 1991-2005 https://doi.org/10.1172/JCI58832
- Nakayama M, Nakayama A, van Lessen M et al (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15, 249-260 https://doi.org/10.1038/ncb2679
- Kume T (2008) Foxc2 transcription factor: a newly described regulator of angiogenesis. Trends Cardiovasc Med 18, 224-228 https://doi.org/10.1016/j.tcm.2008.11.003
- Yu FX, Zhao B and Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828 https://doi.org/10.1016/j.cell.2015.10.044
- Sun S and Irvine KD (2016) Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network. Trends Cell Biol 26, 694-704 https://doi.org/10.1016/j.tcb.2016.05.003
- Zhao B, Li L, Tumaneng K, Wang CY and Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24, 72-85 https://doi.org/10.1101/gad.1843810
- Hansen CG, Moroishi T and Guan KL (2015) YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25, 499-513 https://doi.org/10.1016/j.tcb.2015.05.002
- Morin-Kensicki EM, Boone BN, Howell M et al (2006) Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 26, 77-87 https://doi.org/10.1128/MCB.26.1.77-87.2006
- Choi HJ, Zhang H, Park H et al (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6, 6943 https://doi.org/10.1038/ncomms7943
- Glienke J, Schmitt AO, Pilarsky C et al (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267, 2820-2830 https://doi.org/10.1046/j.1432-1327.2000.01325.x
- Min JK, Park H, Choi HJ et al (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Invest 121, 1882-1893 https://doi.org/10.1172/JCI42556
- Park HW, Kim YC, Yu B et al (2015) Alternative Wnt Signaling Activates YAP/TAZ. Cell 162, 780-794 https://doi.org/10.1016/j.cell.2015.07.013
- Bentley K, Franco CA, Philippides A et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16, 309-321 https://doi.org/10.1038/ncb2926
- Zihni C, Mills C, Matter K and Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17, 564-580 https://doi.org/10.1038/nrm.2016.80
- Lamalice L, Le Boeuf F and Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100, 782-794 https://doi.org/10.1161/01.RES.0000259593.07661.1e
- Wang X, Freire Valls A, Schermann G et al (2017) YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis. Dev Cell 42, 462-478 e467 https://doi.org/10.1016/j.devcel.2017.08.002
- Moleirinho S, Guerrant W and Kissil JL (2014) The Angiomotins--from discovery to function. FEBS Lett 588, 2693-2703 https://doi.org/10.1016/j.febslet.2014.02.006
- Aase K, Ernkvist M, Ebarasi L et al (2007) Angiomotin regulates endothelial cell migration during embryonic angiogenesis. Genes Dev 21, 2055-2068 https://doi.org/10.1101/gad.432007
- Zheng Y, Vertuani S, Nystrom S et al (2009) Angiomotinlike protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circ Res 105, 260-270 https://doi.org/10.1161/CIRCRESAHA.109.195156
- Kim J, Kim YH, Kim J et al (2017) YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 127, 3441-3461 https://doi.org/10.1172/JCI93825
- Barry DM, Xu K, Meadows SM et al (2015) Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142, 3058-3070 https://doi.org/10.1242/dev.125260
- Park H, Jung HY, Choi HJ et al (2014) Distinct roles of DKK1 and DKK2 in tumor angiogenesis. Angiogenesis 17, 221-234 https://doi.org/10.1007/s10456-013-9390-5
- Garnaas MK, Moodie KL, Liu ML et al (2008) Syx, a RhoA guanine exchange factor, is essential for angiogenesis in vivo. Circ Res 103, 710-716 https://doi.org/10.1161/CIRCRESAHA.108.181388
- Ernkvist M, Luna Persson N, Audebert S et al (2009) The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 113, 244-253 https://doi.org/10.1182/blood-2008-04-153874
- Iruela-Arispe ML and Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16, 222-231 https://doi.org/10.1016/j.devcel.2009.01.013
- Iden S, Rehder D, August B et al (2006) A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep 7, 1239-1246 https://doi.org/10.1038/sj.embor.7400819
- Koh W, Mahan RD and Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121, 989-1001 https://doi.org/10.1242/jcs.020693
- Xu K, Sacharidou A, Fu S et al (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20, 526-539 https://doi.org/10.1016/j.devcel.2011.02.010
- Hultin S, Subramani A, Hildebrand S, Zheng Y, Majumdar A and Holmgren L (2017) AmotL2 integrates polarity and junctional cues to modulate cell shape. Sci Rep 7, 7548 https://doi.org/10.1038/s41598-017-07968-1
- Hultin S, Zheng Y, Mojallal M et al (2014) AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun 5, 3743
- Wang Y, Li Z, Xu P et al (2011) Angiomotin-like2 gene (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. J Biol Chem 286, 41095-41104 https://doi.org/10.1074/jbc.M111.296806
- Kouklis P, Konstantoulaki M, Vogel S, Broman M and Malik AB (2004) Cdc42 regulates the restoration of endothelial barrier function. Circ Res 94, 159-166 https://doi.org/10.1161/01.RES.0000110418.38500.31
- Komarova YA, Kruse K, Mehta D and Malik AB (2017) Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 120, 179-206 https://doi.org/10.1161/CIRCRESAHA.116.306534
- Wada K, Itoga K, Okano T, Yonemura S and Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907-3914 https://doi.org/10.1242/dev.070987
- Choi KS, Choi HJ, Lee JK et al (2016) The endothelial E3 ligase HECW2 promotes endothelial cell junctions by increasing AMOTL1 protein stability via K63-linked ubiquitination. Cell Signal 28, 1642-1651 https://doi.org/10.1016/j.cellsig.2016.07.015
- Skouloudaki K and Walz G (2012) YAP1 recruits c-Abl to protect angiomotin-like 1 from Nedd4-mediated degradation. PLoS One 7, e35735 https://doi.org/10.1371/journal.pone.0035735
- Sakabe M, Fan J, Odaka Y et al (2017) YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc Natl Acad Sci U S A 114, 10918-10923
- Napione L, Pavan S, Veglio A et al (2012) Unraveling the influence of endothelial cell density on VEGF-A signaling. Blood 119, 5599-5607 https://doi.org/10.1182/blood-2011-11-390666
- Chen J, Somanath PR, Razorenova O et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11, 1188-1196 https://doi.org/10.1038/nm1307
- Bernascone I and Martin-Belmonte F (2013) Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 23, 380-389 https://doi.org/10.1016/j.tcb.2013.03.007
- Basu S, Totty NF, Irwin MS, Sudol M and Downward J (2003) Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11, 11-23 https://doi.org/10.1016/S1097-2765(02)00776-1
- Giampietro C, Disanza A, Bravi L et al (2015) The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol 211, 1177-1192 https://doi.org/10.1083/jcb.201501089
- Nakajima H, Yamamoto K, Agarwala S et al (2017) Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance. Dev Cell 40, 523-536 e526 https://doi.org/10.1016/j.devcel.2017.02.019
- Young K, Tweedie E, Conley B et al (2015) BMP9 Crosstalk with the Hippo Pathway Regulates Endothelial Cell Matricellular and Chemokine Responses. PLoS One 10, e0122892 https://doi.org/10.1371/journal.pone.0122892
- Yu FX, Zhao B, Panupinthu N et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791 https://doi.org/10.1016/j.cell.2012.06.037
- Kim W, Khan SK, Gvozdenovic-Jeremic J et al (2017) Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 127, 137-152
Cited by
- Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation pp.1937-5395, 2018, https://doi.org/10.1007/s12265-018-9842-9
- Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology vol.11, pp.552, 2018, https://doi.org/10.1126/scisignal.aau1165
- Putting VE-cadherin into JAIL for junction remodeling vol.132, pp.1, 2019, https://doi.org/10.1242/jcs.222893