• Title/Summary/Keyword: Tip shape

Search Result 574, Processing Time 0.025 seconds

Analysis on inclined or rounded tip piles using 3D printing technology and FE analysis

  • Jaehong Kim;Junyoung Ko;Dohyun Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.91-99
    • /
    • 2023
  • To test the effect of various pile tip shape series of model scale loading tests were carried out on test piles with special pile tips. Special pile tips were made using the 3D printer and were attached to the bottom end of the test pile for loading tests. The pile tips were made to have 30°, 45°, 60° inclined tips, as well as a rounded tip. The main objective of the test was to observe the effect of various pile tip shapes on settlement and penetrability of the pile. Moreover, a numerical model simulating the pile loading test carried out in this study was established and verified based on the loading test results. From this, the stress concentration around the pile tip was investigated. This will allow us to analyze the decrease of stress concentration around the pile tip which is the main cause of the pile tip damage during pile installation. However, modifying the pile tip shape will eventually increase the settlement of the pile. By estimating the degree of increase in pile settlement, the viability and the efficiency of the pile shape modification was judged. In addition, case studies on the effect of different pile tip shape and ground conditions on pile settlement and stress dispersion was conducted.

The Effect of Plunger Tip Shape on the Formability in Semi-Solid Die Casting Process (반용융 다이캐스팅 공정에 있어서 플런저 팁의 형상이 성형성에 미치는 영향)

  • 서판기;손영익;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.312-322
    • /
    • 2002
  • In this study, an innovative semi-solid die casting technology to replace heavier cast iron compressor parts with lightweight aluminum castings was proposed, and the application possibility for home-appliance component was investigated. The most important factors regarding the semi-solid die casting process are the reheating process of the raw materials to the semi-solid state, specifications of the forming machine, the optimal injection conditions and die design. Materials used in this study were A3S7 and hSn alloys fabricated by the electromagnetic stirring process. The optimal injection conditions for semi-solid die casting process were Presented with the reheating conditions of the semi-solid materials. To investigate the effect of plunger tip shape on the formability and mechanical properties in semi-solid die casting process for complicated shape part, two kinds of plunger tip shape with long and short plunger tip taper are proposed.

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

A study on the pintle-tip shapes effect of nozzle flow using cold-flow test (핀틀 형상이 노즐 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho;Lee, Jong-Hoon;Jeon, Min-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.985-991
    • /
    • 2010
  • The objective of this work was to investigate the pintle-tip shape effect on nozzle flow and thrust by cold flow test. When nozzle throat area was decreased by pintle movement, chamber pressure was increased monotonously but thrust was increased differently according to every pintle-tip shape. At the same chamber pressure and nozzle throat area, thrust of convex pintle-tip shape was mostly larger than that of concave one. Nozzle wall pressure distribution and magnitude of pintle-tip load depended on the pintle-tip shape, pintle position and nozzle throat area.

Mo-tip Field Emitter Array having Modified Gate Insulator Geometry (변형된 게이트 절연막 구조를 갖는 몰리브덴 팁 전계 방출 소자)

  • Ju, Byeong-Kwon;Kim, Hoon;Lee, Nam-Yang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.59-63
    • /
    • 2000
  • For the Mo-tip field emitter array, the method by which the geometrical structure of the gate insulator wall could be modified in order to improve field emission properties(turn-on voltage and gate leakage current). The device having a gate insulator of complex shape, which means the combined geometrical structure with round shape made by wet etching and vertical shape made by dry etching processes, was fabricated and the field emission properties of the three kinds of devices were compared. As a result, the electric field applied to tip apex could be increased and gate leakage current could be decreased by employing the gate insulator having geometrical wall structure of mixed shape. Finally, the obtained empirical results were analyzed by simulation of electric field distribution at/near the tip apex and gate insulator using SNU-FEAT simulator.

  • PDF

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Effect of Turbine Blade tip shape on the Total Pressure Loss of a Turbine Cascade (블레이드 팁 형상이 터빈 캐스케이드 전압 손실에 미치는 영향에 대한 연구)

  • Lee, Ki-Seon;Park, Seoung-Duck;Noh, Young-Chul;Kim, Hak-Bong;Kwak, Jae-Su;Jun, Yong-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • Leakage flow through turbine blade tip gap causes strong leakage vortex near the blade suction side and induces large aerodynamic losses. In this study, the conventional plane tip and various squealer tip blades were tested in a linear cascade in order to measure the effect of the tip shape on the total pressure loss. Three tip gap clearances of 0.6%, 1.3%, and 2.0% of blade span were tested. Flow measurement was conducted at one chord downstream from the trailing edge with a five-hole probe. Results showed that the leakage vortex was stronger than passage vortex and the mass averaged overall total pressure loss through the cascade was the lowest for suction side blade tip case. For all tested cases, the area averaged overall total pressure loss was increased as the tip clearance increased.

Force per unit Displacement according to the Shape of a Clasp Arm and Flexibility of the Material (Clasp arm의 형상과 재료 탄성에 따른 단위 변위에 대한 힘)

  • Lim, Dong-Chun
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The purpose of this study is to evaluate force per unit displacements according to the shape of a clasp arm and flexibility of the material. Effect of four shape parameters of a clasp, base width and thickness and tip width and thickness, on tip displacement and force per unit displacement was investigated to get the fact that displacement and force per unit displacement at the tip increase as thickness and width of clasp arm increase just as expected. But force per unit displacement is much more affected by the change in thickness than by change in width. So it is effective to increase the thickness rather than width in order to increase the force at the tip using the same amount of the material.

  • PDF

A Study on the Characteristics of the Galvalume Steel Sheet (갈바륨 강판의 특성에 관한 연구)

  • 김순경;김민주;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.78-84
    • /
    • 1998
  • The problem of autobody corrosion has been addressed over the past decade by the increasing use of zinc and zinc alloy coated steels in automotive application. This paper describes the evaluation of formability, weldability and painted corrosion performance of galvalume steel sheet. This paper presents an overview of the program and some initial test results on the weldability, lifetime of the electrode tip shape of the spot welding and corrosion protection. Galvalume steel sheet improved corrosion performance and spot weldability of galvalume steel sheet was not changed under the influence of the variation of welding current. And tip shape has influenced on the lifetime of tip for galvalume steel sheet.

  • PDF