• Title/Summary/Keyword: Tip material

Search Result 594, Processing Time 0.034 seconds

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

Etching Treatment of Vertically Aligned Carbon Nanotubes for the Application to Biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.594-598
    • /
    • 2008
  • The metal catalyst particles which there is as impurities on a tip part of carbon nanotube (CNT) are not good to apply it to a nano-electronic device. It was very important the opening of CNT-tip to fix a target bio material and a material to accept in CNT in a biosensor, so we performed $HNO_3$ wet etching to remove the metal catalyst particle which there was on a tip part of CNT grown up in the study and observed the opened CNT-tip with etching time. We synthesized the CNTs using a HF-PECVD method and choses the CNT length of 700 nm for the application of nano-electronic device such as a biosensor etc.. We observed the opened CNT-tip with wet etching times of $HNO_3$ (10, 30, 60 min). From the results, we observed that the CNT-tip was opened with the increase of wet etching time lively. In case of CNTs etched during 60 min, we confirmed that there was not the ratio of Ni included in CNTsI as catalyst. Conclusively, in the case of CNT etched for 60 minutes, it is completely good for application of a biosensor and, in addition, the metal-free CNTs will contribute to the application of other nanoelectronic devices.

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Force per unit Displacement according to the Shape of a Clasp Arm and Flexibility of the Material (Clasp arm의 형상과 재료 탄성에 따른 단위 변위에 대한 힘)

  • Lim, Dong-Chun
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The purpose of this study is to evaluate force per unit displacements according to the shape of a clasp arm and flexibility of the material. Effect of four shape parameters of a clasp, base width and thickness and tip width and thickness, on tip displacement and force per unit displacement was investigated to get the fact that displacement and force per unit displacement at the tip increase as thickness and width of clasp arm increase just as expected. But force per unit displacement is much more affected by the change in thickness than by change in width. So it is effective to increase the thickness rather than width in order to increase the force at the tip using the same amount of the material.

  • PDF

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

Etching treatment of vertically aligned carbon nanotubes for the application to biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Jung, Seoung-Ho;Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.353-353
    • /
    • 2007
  • 탄소나노튜브(CNT)의 tip 부분에 존재하는 금속 촉매 입자들은 불순물로써 나노전자소자에 응용하는데 좋지 않은 영향을 미칠 수 있다. 또한, 바이오센서에서 target 바이오 물질과 반응하는 물질을 CNT에 고정시키기 위해서는 CNT-tip을 개방시키는 것이 중요하다. 본 연구에서는 성장된 CNT의 tip부분에 존재하는 금속 촉매 입자의 제거와 CNT-tip을 개방하기 위해 $HNO_3$의 농도 (20, 40, 60)와 etching 시간 (5, 10, 15, 20, 25 min)에 따라 최적의 조건을 찾는 실험을 하였다.

  • PDF

The Effects of Gap Length and Tip Radius Influenced in Breakdown of Mineral Based Insulating Oil (광유의 절연파괴에 미치는 전극간격 및 침전극 곡률반경의 영향)

  • 이종섭;신태수;이운용;박영국;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.254-257
    • /
    • 1997
  • In this paper, we investigated the effects of gap length and tip radius influenced in breakdown of mineral based insulation oil Electrode system was needle-plane geometry It is to model conductive extrusions in oil filled electrical power apparatus. The tip radius of needle electrode was 5, 10, 20 and 25${\mu}{\textrm}{m}$, respectively. We measured breakdown voltage for each of tip radius with increasing electrode gap, 2mm to 12mm. It was calculated electrical breakdown strength at tip using Mason\`s equation from breakdown voltage As gap lenght increased. breakdown strength increased linearly. But, as tip radius of needle increased, breakdown strength decreased exponentially. It can be explained by tole phenomenon that electron is easily injected, as tip radius increases, and effective work function decreases. When appling DC voltage. breakdown 7tr7ilgtll was higher wheal polarity of needle was negative than positive. It is because of the space charge effect ill accordance with the influence of liquid motion.

  • PDF

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Jung, Jong-Ju;Do, Kyung-Yang;Shin, Tai-Wook;Park, Won-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.