• Title/Summary/Keyword: Tip area

Search Result 489, Processing Time 0.023 seconds

Effects of Low Temperature on the Development of Greenhouse White Fly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) (온실가루이의 저온장애에 관한 연구)

  • Choe Kwang-Ryul;Park Joong-Soo
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.233-236
    • /
    • 1983
  • Results obtained from the experiment conducted to determine the potential distribution of greenhouse white flies are summerized as follows; Hatching rate of eggs were significantly decreased when eggs were treated under $-5^{\circ}C$ for three days and no eggs were hatched when 4he eggs were treated at $10^{\circ}C$. for three days. Kate of pupation was also decreased when larvae were subjected to $-5^{\circ}C$ for three days and no pupation of larvae was of served when the larvae were under $-20^{\circ}C$ for three days. Emergency rate of pupae was decreased when pupae were under $-20^{\circ}C$. for three days and no emergence was observed when pupae were treated at the temperature of $-20^{\circ}C$ for three days. Survival rate of adults were greatly decreased when they were under $-7.5^{\circ}C$. for three days and the adults were completely dead when they were subjected to $-10^{\circ}C$. for three days. Therefore, it may be concluded that the greenhouse white flies may be overwintered, in the from of pupae at the middle-southern part of Korea, while they may overwinter in all developmental stages in Jeju Island and in southern tip coast area of Korea.

  • PDF

Studies on Ecology and Injury Characteristics of Japanese Suniperus Bark Borer, Semanotus bifasciatus Mostschulsky (측백하늘소의 생태 및 가해특성에 관한 연구)

  • Kim Kyu Chin;Park Jong Dae
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.109-115
    • /
    • 1984
  • This study was conducted to investigate the bionomics, host range and damage aspect of Japanese juniperus bark borer, Semanotus bifasciatus M., which shoves the severe damage for the Juniperace in Chonnam province, recently. Host plants were Juniperus virginiana, J. chinensis var. kaizuka, J. chinensis, Biata orientalis var. nepalensis, Chamaccyparis ostus and Thujopsis dolabrata. Out of those, J. chinensis var. kaizuka is newly investigated in this study. Damage rate in each area was $16.5\%$ in Kwangju, $4.25\%$ in Damyang ana $6.5\%$ in Hwasoon. Adults appear once a year, with a peak at late March to early April. Adults emergence during the day showed the peak at 13 to 15 hours and were influenced in the maximum temperature in a day. Attack direction of larva after invasion in the stem was $62\%$ toward base, $22\%$ toward tip and $16\%$ toward horizon, and the damage in each DBH (Diameter of breast height) was the greatest at $30\~40mm$. At period of each stage, egg was $15.8\~19.7$ days, larva was $l12\~126$ days and pupa was $15\~21$ days. Longevity of adult was 19 days for female and 16 days for male.

  • PDF

Difference of Facial Skin Temperature Responses between Fear and Joy (공포와 기쁨 정서 간 안면온도 반응의 차이)

  • Eum, Yeong-Ji;Eom, Jin-Sup;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • There have been many emotion researches to investigate physiological responses on specific emotions with physiological parameters such as heart rate, blood volume flow, and skin conductance. Very few researches, however, exists by detecting them with facial skin temperature. The purpose of present study was to observe the differences of facial skin temperature by using thermal camera, when participants stimulated by monitor scenes which could evoke fear or joy. There were totally 98 of participants; undergraduate students who were in their adult age and middle, high school students who were in their adolescence. We measured their facial temperature, before and after presenting emotional stimulus to see changes between both times. Temperature values were extracted in these regions; forehead, inner corners of the eyes, bridge of the nose, end of the nose, and cheeks. Temperature values in bridge and end of the nose were significantly decreased in fear emotion stimulated. There was also significant temperature increase in the area of forehead and the inner corners of the eyes, while the temperature value in end of the nose decreased. It showed decrease in both stimulated fear and joy. These results might be described as follows: When arousal level going up, sympathetic nervous activity increases, and in turn it makes blood flow in peripheral vessels under the nose decrease. Facial temperature changes by fear or joy in this study were the same as the previous studies which measured temperature of finger tip, when participants experiencing emotions. Our results may help to develop emotion-measuring techniques and establish computer system bases which are to detect human emotions.

  • PDF

Fabrication of Electrospun Juniperus Chinensis Extracts loaded PVA Nanofibers (향나무 추출물을 함유하는 PVA 나노섬유 제조)

  • Kim, Jeong-Hwa;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Electrospinning is a simple and effective process for producing nanofiber with diameter range from nanometers to micrometers which have high specific surface area. Hence, medicated nanofibers can be readily fabricated using a solution containing a mixture of a plant-extracts and a polymer. It has proved that Juniperus Chinensis can be effectively used for the prevention of UV and SLS-induced advers skin reaction such as radical production, inflammation and skin cell damage. It also found that Juniperus Chinensis has efficient ingredient of antifungal activity and house dust mite repellent effect. The fabrication of PVA nanofibers containing Juniperus Chinensis extracts by electrospinning has been studied. PVA/Juniperus Chinensis extracts composite nanofibers were produced at different Juniperus Chinensis concentrations (0.25, 0.5, 1.5 wt. %). The parameters of electrospinning including polymer contents, voltage and tip-to-collector distance (TCD) were optimized for fabrication process. The study show that 12 wt. % PVA, 10kV applied voltage and TCD 10~20 cm are the best condition to obtain uniform PVA/Juniperus Chinensis extracts composite nanofibers. Morphologies of the electrospun composite nanofiber were observed by using a field emission scanning electron microscope. It has been found that the average diameters of fibers increased by the adding of Juniperus Chinensis extracts. As the results, PVA/Juniperus Chinensis extracts composite nanofibers having a diameter in the range from 310~360 nm were successfully prepared via an electrospinning.

Structural Geometry of the Seongjuri Syncline, Chungnam Basin (충남분지 성주리향사의 구조기하학적 해석)

  • Noh, Jungrae;Park, Seung-Ik;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.579-587
    • /
    • 2018
  • Chungnam Basin has been known as one of the largest Mesozoic basins in Korea, filled mainly with so-called Daedong Supergroup. The basin has evolved as the Early to Middle Jurassic intra-arc volcano-sedimentary basin developed on top of the Late Triassic to Early Jurassic post-collisional basin in this area, recording evolutionary history of the Mesozoic tectonics in the southwestern Korean Peninsula. This study carries out the geometric interpretations of the Seongjuri syncline and its surroundings in the central part of the Chungnam Basin, based on detailed structural field survey. Based on its doubly-plunging fold geometry, the Seongjuri syncline could be subdivided into the southwestern and northeastern domains. On the down-plunge profiles of the southwestern domain of the Seongjuri syncline as well as the underlying Okma fold, the Okma fault shows typical geometry of a basement-involved reverse fault that propagated up to the sedimentary cover. The profiles illustrate that the Seongjuri syncline occurs in front of the tip of the Okma fault, likely implying its origin as a part of the fault-related fold system. The result of this study will provide better insight into the structural interpretation of the Chungnam Basin, and will further provide useful information for the Mesozoic orgenic events of the southwestern Korean Peninsula.

Factors Influencing the Duration of Forced Eruption in Impacted Maxillary Canines (상악 매복 견치의 견인 기간에 영향을 미치는 요인에 대한 분석)

  • Ji-hye, Han;Yon-joo, Mah
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.402-413
    • /
    • 2022
  • The aim of this study was to identify factors that affect the treatment duration and to predict the duration of forced eruption in impacted maxillary canines using panoramic radiographs and cone-beam computed tomography. This retrospective study was performed by reviewing medical records and radiographs of 73 patients (93 impacted maxillary canines) from the age of 8 to 18 years who were treated with surgical and orthodontic interventions on impacted maxillary canines from January 2012 to December 2020 in Ajou University Dental Hospital. Stepwise multiple regression analysis showed that the distance between the canine cusp tip and the occlusal plane, mesio-distal location, bucco-palatal location, patient's age, and use of rapid palatal expansion are significant factors with regard to the duration of forced eruption. There was a statistically significant correlation of the treatment duration with the angulation between the axis of the canine and the occlusal plane and unilateral or bilateral impaction. It can be concluded that the duration of forced eruption in impacted maxillary canines could be shorter when the impacted canine is closer to the occlusal plane and located in the lateral incisor or canine area, buccal or middle, the patient is younger and uses rapid palatal expansion.

Kinematic Interpretation for the Development of the Yeonghae Basin, Located at the Northeastern Part of the Yangsan Fault, Korea

  • Altaher, Zooelnon Abdelwahed;Park, Kiwoong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.467-482
    • /
    • 2022
  • The Yeonghae basin is located at the northeastern part of the Yangsan fault (YSF; a potentially active fault). The study of the architecture of the Yeonghae basin is important to understand the activity of the Yangsan fault system (YSFS) as well as the basin formation mechanism and the activity of the YSFS. For this study, Digital Elevation Model (DEM) was used to highlight the marginal faults, and structural fieldwork was performed to understand the geometry of the intra-basinal structures and the nature of the bounding faults. DEM analysis reveals that the eastern margin is bounded by the northern extension of the YSF whereas the western margin is bounded by two curvilinear sub-parallel faults; Baekseokri fault (BSF) and Gakri fault (GF). The field data indicate that the YSF is striking in the N-S direction, steeply dipping to the east, and experienced both sinistral and dextral strike-slip movements. Both the BSF and GF are characterized dominantly by an oblique right-lateral strike-slip movement. The stress indicators show that the maximum horizontal compressional stress was in NNE to NE and NNW-SSE, which is consistent with right-lateral and left-lateral movements of the YSFS, respectively. The plotted structural data show that the NE-SW is the predominant direction of the structural elements. This indicates that the basin and marginal faults are mainly controlled by the right-lateral strike-slip movements of the YSFS. Based on the structural architecture of the Yeonghae basin, the study area represents a contractional zone rather than an extensional zone in the present time. We proposed two models to explain the opening and developing mechanism of the Yeonghae basin. The first model is that the basin developed as an extensional pull-apart basin during the left-lateral movement of the YSF, which has been reactivated by tectonic inversion. In the second model, the basin was developed as an extensional zone at a dilational quadrant of an old tip zone of the northern segment of the YSF during the right-lateral movement stage. Later on, the basin has undergone a shortening stage due to the closing of the East Sea. The second model is supported by the major trend of the collected structural data, indicating predominant right-lateral movement. This study enables us to classify the Yeonghae basin as an inverted strike-slip basin. Moreover, two opposite strike-slip movement senses along the eastern marginal fault indicate multiple deformation stages along the Yangsan fault system developed along the eastern margin of the Korean peninsula.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

SNU 1.5MV Van de Graaff Accelerator (IV) -Fabrication and Aberration Analysis of Magnetic Quadrupole Lens- (SNU 1.5MV 반데그라프 가속기 (IV) -자기 4극 렌즈의 제작과 수차의 분석-)

  • Bak, H.I.;Choi, B.H.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • A magnetic quadrupole doublet was fabricated for use at the pre-target position of SNU 1.5MV Van de Graaff accelerator and then its optical characteristics were measured and analysed. The physical dimensions are: pole length 180mm, aperture radius 25mm, pole tip radius 28.75mm. Material for poles and return yokes is carbon steel KS-SM40C. Coils have 480 turns per one pole and air-cooling is adopted. Applying the d.c. current 2.99$\pm$0.03A to the lens, and using the Hall probe, magnetic field elements $B_{\theta}$ , $B_{\gamma}$, were measured at the selected Points along each coordinate direction r,$\theta$, z. From the area integration and orthogonal polynomial fitting for the measured data, the magnetic Field gradient G=566.3$\pm$2.1 gauss/cm at lens center, the effective length L=208.3$\pm$1.44mm along the lens axis have been obtained. The harmonic contents were determined up to 20-pole from the generalized least squares fitting. The results indicate that sextupole/quadrupole is below 1.4$\pm$0.9% and all the other multipoles are below 0.5% in the region within 18mm radius at the center of lens.

  • PDF

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.