• Title/Summary/Keyword: Tip angle

Search Result 601, Processing Time 0.02 seconds

Numerical Analyses and Wind Tunnel Tests of a Propeller for the MAV Propulsion (초소형 무인기 추진용 프로펠러의 전산해석 및 풍동시험)

  • Cho, Lee-Sang;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.955-965
    • /
    • 2010
  • The MH-75 propeller for the MAV propulsion is designed using a free vortex design method which considers design parameters such as the hub-tip ratio, the twist angle distribution, the maximum camber location and the chord length of the propeller blade. Aerodynamic characteristics of the MH-75 propeller are predicted by changing the flight speed using the frequency domain panel method. And, the thrust characteristics of the MH-75 propeller are measured using the balance system of the subsonic wind tunnel for the validation of numerical results. The performance characteristics of the MH-75 propeller satisfied with design requirements. Numerical results of the MH-75, which are predicted by the frequency domain panel method, are more agree with experimental results compare with XFOIL.

Depth Sizing of Notch Fatigue Crack Using Diffracted Ultrasonic Wave (회절초음파를 이용한 노치 피로균열의 균열깊이 평가)

  • Jin, Mei-Ling;Lee, Tae-Hun;Park, Byung-Jun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.405-414
    • /
    • 2009
  • This paper proposed a methodology based on ultrasonic diffraction technique to inspect the depth of a crack initiated from a notch of CT specimen by fatigue test, and its usefulness was verified by experiments. Especially, in order to identify accurately the diffractive waves from the crack tip in the situation where there are extra diffractive elements such as a notch, we have tried imaging by transducer scan and analyzed the propagation path of diffracted wave. Two specimens with and without a crack were experimented. Higher frequency and larger refractive angle of transducer showed a tendency to decrease the error in the measurements, and the measured crack depth showed an error less than 0.38 mm in case of 4 MHz $60^{\circ}-60^{\circ}$. The proposed methodology is applicable to weak diffractive sources, and so that it would be useful to inspect micro cracks and for their depth sizing.

Synthesis of Top Connector for Solar Cells by Using Silver Paste (Silver Paste 를 이용한 Solar Cell 은 전극 제조)

  • Kim, Young-Kyu;Jeong, Tae-Eui;Oh, Dong-Hoon;Kim, Nam-Soo;Hong, Seong-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1837-1842
    • /
    • 2010
  • Studies on alternative energy have been carried out for many decades because of the accelerated exhaustion of fuel. While the efficacy of solar cells is still low in comparison with that of nuclear power, solar cells have been highlighted as potential sources of alternative energy because they are environmentally friendly and have a source of unlimited energy, namely, the sun. In this study, the optimum efficiency of solar cells was simulated as a function of the incident angle of sunlight and the geometric shapes of patterns using MATLAB and MathCAD software. The foremost efficiency of the solar cell was found to be 1.10 when the thickness and width of the patterns were in the range 25-$50{\mu}m$ and 50-$100{\mu}m$, respectively. To achieve the 25 um thick layer, 100,000 cps silver paste and 500 um orifice tip has been successfully implemented with Micro-Dispensing Deposition Writing.

Calibration of a Five-Hole Pressure Probe using a Single Sector Error Interpolation Model (단일영역 오차보간 모델을 이용한 5-Hole Pressure Probe의 교정)

  • O, Se-Yun;An, Seung-Gi;Jo, Cheol-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.30-38
    • /
    • 2006
  • A new calibration method for five-hole pressure probe is presented. This method provides accuracies better than those based on the traditional regression method. The calibration algorithm uses a single sector interpolation response surface calculated by comparing the regression curve fits with the actual calibration data. A five-hole pressure probe with hemispherical tip was fabricated and calibrated at Reynolds number of $4.11{\times}10^6$/m and flow angle of ${\pm}48$ degrees. Two data prediction models, the least-square regression and a single sector error interpolation, were evaluated. The comparison of these two calibration methods to a five-hole probe is described and discussed. An evaluation of the calibration accuracy is also given.

Comparison of Impedance Parameters and Occupational Therapy Evaluation in the Paretic and Non-paretic Upper Extremity of Hemiplegic Stroke Patients

  • Yoo, Chan-Uk;Kim, Jaehyung;Hwang, Youngjun;Kim, Gunho;Shin, Yong-Il;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1980-1991
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body function in paretic and non-paretic regions. In this study, the impedance parameters were acquired to assess the physical status in the upper extremity of thirty six stroke patients with hemiplegia caused by cerebral hemorrhage (10 patients) and cerebral infarction (26 patients), using bioelectrical impedance. Prediction marker (PM), phase angle (PA), PM/PA, and resistance (R) versus reactance ($X_c$) were utilized to evaluate the functional status of the paretic and non-paretic regions. In addition, the hand grip strength (HGS) and the pinch strength (lateral, palmer, tip) were measured on the upper extremity of hemiplegic stroke patients. PM was distributed in inversely proportional to HGS, but PA was distributed in proportional to HGS. However, there were a number of patients with HGS of 0, regardless of the impedance parameters (PM, PA, R vs. $X_c$). Paretic and non-paretic status in upper extremity of these patients could not be analyzed using impedance parameters. At the rehabilitation therapist's instructions, they were unable to move the hand and fingers of the paretic upper extremity by cranial nerve damage, motor nerve damage, and severe cognitive decline.

Motion Plane Estimation for Real-Time Hand Motion Recognition (실시간 손동작 인식을 위한 동작 평면 추정)

  • Jeong, Seung-Dae;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.347-358
    • /
    • 2009
  • In this thesis, we develop a vision based hand motion recognition system using a camera with two rotational motors. Existing systems were implemented using a range camera or multiple cameras and have a limited working area. In contrast, we use an uncalibrated camera and get more wide working area by pan-tilt motion. Given an image sequence provided by the pan-tilt camera, color and pattern information are integrated into a tracking system in order to find the 2D position and direction of the hand. With these pose information, we estimate 3D motion plane on which the gesture motion trajectory from approximately forms. The 3D trajectory of the moving finger tip is projected into the motion plane, so that the resolving power of the linear gesture patterns is enhanced. We have tested the proposed approach in terms of the accuracy of trace angle and the dimension of the working volume.

Surface Pressure Measurement on a Rotor Blade using Fast-Responding PSP (고속압력감응페인트를 이용한 로터 블레이드 표면 압력 측정)

  • Kim, Kidong;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The present study was conducted by using fast-responding PSP technique to measure the surface pressure on a small-scale rotor blade in hover. Also, the study was performed to verify the accuracy and investigate its possibility of PSP application for rotor blade pressure measurement. Pulsed laser which has 532 nm wavelength was used as a light source. Lifetime measurement technique was applied. Also, the coated paint on a rotor blade was porous PSP which has faster response time than conventional PSP. The blades had NACA0012 airfoils. The length of rotor blade was 340 mm and chord was 40 mm with rectangular shape 1 set, and 4 sets had several tip sweepback angles. The measured results qualitatively showed that the upper surface pressure decreases with increasing the collective pitch angle. Quantitative pressure coefficients of PSP results were higher approximately 0.4 to 0.7 than the pressure tap data of the NASA experiment.

A Study on Combustion Performance by the Shape of Slit of the Canted Slit Type Pintle Injector (기울어진 슬릿을 가지는 핀틀 분사기의 슬릿 형상에 따른 연소성능에 관한 연구)

  • Yu, Isang;Choi, Jiseon;Kim, Taewoan;Ko, Youngsung;Kim, Sunhoon;Kim, Hyungmo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • In this paper, combustion tests were performed to investigate performance characteristics of a canted slit-type pintle injector engine which uses kerosene and liquid oxygen as propellants. The number of slits, slit angle and blockage factor were chosen as design variables of the pintle injector. ${\Delta}SR$ was newly defined as the difference of skip ratio caused by both sides of the tip of the canted slit. The experimental results showed that optimal combustion was performed when the blockage factor is about 1 and the difference is less than 0.26.

FLEXURE STRENGTH OF ACRYLIC RESIN TEMPORARY BRIDGE BY PONTIC DESIGN (Pontic Design에 따른 임시가공의치의 파절강도에 관한 연구)

  • Oh Sang-Chun;Jin Tai-Ho;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • The purpose of this study was to evaluate the flexure stregth of posterior 4-unit acrylic resin bridge with different pontic designs : 1) Conventional pontic 2) Hygienic pontic and 3) Modified hygienic pontic. All specimens were made of self-curing acrylic resin for provisional restorations. Self-curing acrylic resin was filled in a silicone mold by the drop-on technique ; and was polymerized in a pressure spot under 20 psi pressure. The test specimens which were simply shaped posterior 4-unit bridge were 38mm ion 4mm wide, and 35mm thick(connector : 3mm thick). Each specimen was subjected to an increasing load of Instron machine with its tip centered on the specimen at 90-degree angle, and the machine was operated with its load cell of 50kg and its crosshead speed, 2mm/minute : and then the load values at the moment of the fracture of them were recorded. This study was also performed to analyze their stress distributions by the finite element method. The obtained results were as follows : 1. Flexure strength of the hygienic pontic(9.78kg) and the modified hygienic pontic(10.17kg) was higher than that of conventional pontic(6.96kg). But no significant difference was found between the hygienci pontic and the. modified hygienic pontic. The above statistic values were appraised by ANOVA and Duncan's multiple range test 2. Stress was concentrated on the middle portion in every group : and the stress of conventional pontic was found the greatest of all pontic designs.

  • PDF

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.