• Title/Summary/Keyword: Tin-Aluminum

Search Result 115, Processing Time 0.021 seconds

Titanium Ions Released from Oral Casting Alloys May Contribute to the Symptom of Burning Mouth Syndrome

  • Park, Yang Mi;Kim, Kyung-Hee;Lee, Sunhee;Jeon, Hye-Mi;Heo, Jun-Young;Ahn, Yong-Woo;Ok, Soo-Min;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.42 no.4
    • /
    • pp.102-108
    • /
    • 2017
  • Purpose: Many metal ions released from dental casting alloys have been reported to influence the intraoral symptoms of oral lichen planus (OLP) and burning mouth syndrome (BMS). The aim of this study was to investigate the relationship between salivary metal ion levels and the prosthetic duration as well as to evaluate the time-dependent morbid effects of metal ions in OLP and BMS patients. Methods: Three study groups consist of the following subjects respectively: 17 OLP patients, 12 BMS patients, and 12 patients without oral symptoms. The salivary concentrations of 13 metal ions (copper, cobalt, zinc, chromium, nickel, aluminum, silver, iron, titanium [Ti], platinum, tin, palladium, and gold) were measured by Laser Ablation Microprobe Inductively coupled Plasma Mass Spectrometry. Results: The Ti ions had statistically significant differences among the groups with a prosthetic duration of less than 5 years. There were no significant differences between all ion levels among the groups wearing dental cast alloys for over 5 years. In the BMS group, the level of Ti ions in patients with prosthetic restorations less than 5 years old were significantly high (p<0.05). Conclusions: In the BMS group, 3-60 months during which salivary Ti levels were higher were matched with the duration of burning symptoms ($15.6{\pm}17.1months$). Furthermore, Ti ions were statistically high in the oral cavity of BMS patients fitted with dental casting alloys for 5 years. These results suggest that Ti ions released from dental implants and oral prostheses could attribute to burning sensation of BMS.

이종 타겟을 지닌 대향 타겟 스퍼터링 방법으로 제작된 AZO 박막의 광학적·전기적 특성에 관한 연구

  • ;Seo, Seong-Bo;Bae, Gang;Kim, Dong-Yeong;Choe, Myeong-Gyu;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.337-337
    • /
    • 2014
  • 투명 전도성 산화물(transparent conductive oxide: TCO) 박막은 높은 투과율과 낮은 비저항 덕분에 LCD (liquid crystal display), PDP (plasma display panel), OLED (organic light emitting display) 등 평판 디스플레이에 널리 사용되고 있다. 현재 양산되고 있는 ITO (indium tin oxide)는 90% 이상의 높은 투과율과 우수한 전도성으로 인해 TCO 박막 가운데서 디스플레이 산업에서 가장 널리 쓰이고 있다. 그런데, ITO의 인듐산화물에 의한 간질성 폐렴(interstitial pneumonia)의 유발 위험이 있다든가, 인듐의 매장량이 적어 원자재 가격이 비싼 단점도 가지고 있다. 이에 최근 ITO를 대체할 수 있는 TCO물질로 많은 연구가 이루어지고 있는데, 특히 AZO (aluminum-doped zinc oxide)는 그 중 대표적인 대체물질로서 독성이 없고 가격도 저렴하여 많은 관심이 증폭되고 있다. 현재 AZO는 sol-gel 방법이나 CVD (chemical vapor deposition) 또는 스퍼터링 방법 등으로 증착되고 있다. 본 연구에서는 두 개의 이종타겟(hetero target)을 장착한 대향 타겟 스퍼터링(facing target sputtering: FTS) 장치를 사용하여 AZO 박막을 제작한다. 기존의 여러 증착법과 달리, FTS 장치는 두 타겟 사이에 형성되는 플라즈마 내의 ${\gamma}$-전자를 구속하게 되며, 낮은 가스 압력에서 고밀도 플라즈마가 생성되어 빠른 증착 속도와 안정적인 방전을 유지한 상태에서 박막을 증착할 수가 있다. 또한 기판과 플라즈마가 이격되어 있어 높은 에너지를 갖는 입자들의 기판 충돌을 억제할 수 있는 장점들을 갖는다. 이종 타겟인 ZnO와 Al2O3를 사용하고 각 타겟에 인가되는 파워 변화를 통해 AZO 박막 내 Al2O3의 성분비를 조절하였다. ZnO 타겟의 증착 파워를 100 W로 고정할 경우, Al2O3 타겟의 증착 파워가 (50~90) W으로 실험을 하였으며, Al2O3 타겟의 증착 파워가 70 W일 때 AZO 박막의 Al2O3 성분비는 2.02 wt.%이며 박막의 비저항 값은 $5{\times}10^{-4}{\Omega}{\cdot}cm$로 최소값을 보였다. 이러한 비저항의 변화는 파워에 따른 AZO 박막의 캐리어 이동도(Hall mobility)와 캐리어의 농도(Carrier Concentration)의 변화와 밀접한 관계가 있음을 보여주며, 특히 AZO 박막의 캐리어 농도와 캐리어 이동도는 AZO 박막을 형성하고 있는 결정립의 크기에 의존하는 것이 X-선 회절 패턴과 SEM으로부터 확인되었다. 특히, 본 연구에서는 두 개의 이종 타겟(hetero target) Al2O3와 ZnO를 장착하고 각각의 파워를 변화시켜 도핑 량을 조절할 수는 대향 타겟 스퍼터링(FTS: facing-target sputtering) 방법을 이용하여 제작된 AZO 박막에 대해 전기적, 광학적 및 구조적 특성을 분석하고 ITO의 대체물로서의 가능성을 검토하고자 한다.

  • PDF

Preparation and Current-Voltage Characteristics of Well-Aligned NPD (4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl) Thin Films (분자배열된 4,4' bis[N-(1-napthyl)-N-phenyl-amino] biphenyl 증착박막 제조와 전기적 특성)

  • Oh, Sung;Kang, Do-Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.591-596
    • /
    • 2006
  • Topology and molecular ordering of NPD(4,4'-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl) thin films deposited under magnetic field with post-deposition annealing were investigated. NPD was deposited onto ITO glass substrates via thermal evaporation process in vacuum. It is of great importance for highly oriented organic/metal films to have improved device performances such as higher current density and luminance efficiency. AFM (Atomic Force Microscope) and XRD (X-Ray Diffraction) analyses were used to characterize the topology and structure of oriented NPD films. The multi-source meter was used to observe the current-voltage characteristics of the ITO (Indium-Tin Oxide) / NPD (4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl) / Al (Aluminum) device. While NPD thin films deposited under magnetic field were not molecularly well aligned according to the XRD results, the films after post-deposition annealing at $130^{\circ}C$ were well-oriented. AFM images show that NPD thin films deposited under magnetic field had a smoother surface than those deposited without magnetic field. The current-voltage performance of NPD thin films was improved due to the enhanced electron mobility in the well-aligned NPD films.

Leaching of Copper from Waste Printed Circuit Boards Using Electro-generated Chlorine in Hydrochloric Acid (전해생성(電解生成)된 염소(鹽素)에 의한 폐인쇄회로기판(廢印刷會路基板)으로부터 동(銅)의 침출(浸出))

  • Kim, Min-Seuk;Lee, Jae-Chun;Jeong, Jin-Ki;Kim, Byung-Su;Kim, Eun-Young
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.45-53
    • /
    • 2005
  • Electro-generated chlorine leaching of waste printed circuit boards was investigated in hydrochloric acid solutions. Non-magnetic component of $0.6{\sim}1.2mm$ was prepared by grinding, magnetic separation, and sieving. The non-magnetic component of pulverized printed circuit board contained about 45% of metal component, in which copper was about 83.6%. The leaching rate of copper was greatly affected by current density and agitation speed. The leaching of copper up to 98% was achieved at $20mA/cm^2$, $50^{\circ}C$, 180 minutes, and 600 rpm in 1M HCl solutions. Increasing agitation and lowering current density enhanced utilization efficiency of electro-generated chlorine. Leaching of copper was suppressed at the initial stage, while the minor metal elements, such as aluminum, lead, and tin, were dominantly leached out.

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.