• 제목/요약/키워드: Tin plating

검색결과 74건 처리시간 0.03초

Reflectivity of Sn Solder for LED Lead Frame

  • ;기세호;박상윤;김원중;정재필
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.184-185
    • /
    • 2011
  • In this study, in order to obtain a high reflectivity for the LED lead frame, tin dip coating and tin plating were conducted respectively, and wettability of LED lead frame with tin solder also was tested by wetting balance tester. A Cu sheet was plated in Cu brighten electroplating bath and followed by immersion in a Sn electro-less plating bath [1]. On the other hand, in the dip coating process, a Cu sheet was dipped into molten tin. In the progress of wetting test, besides wetting balance curve, the maximum measured force($F_m$), the maximum withdrawal force($F_w$) and zero-cross time($t_0$) were obtained in various temperatures. With the maximum withdrawal force, the surface tension was calculated at different temperatures. The Cu sheet plated with bright Cu and Sn show a silver bright property while that of Cu dipped with Sn possessed a high reflectance density of 1.34GAM at $270^{\circ}C$.

  • PDF

주석의 도금.확산처리에 의한 황동계 합금의 내마모성 향상 (Improvement of Wear Resistance of Brasses by Electro-plating and Diffusion Treatment of Sn)

  • 안동환;김대룡;윤병하
    • 한국표면공학회지
    • /
    • 제16권3호
    • /
    • pp.98-107
    • /
    • 1983
  • A study on the improvement of wear resistance of brasses by electroplating and diffusion treatment of tin was carried out. The optimum condition of the treatment obtained was as follows. Plating thickness of tin : 5 - 9 $\mu\textrm{m}$ Condition of diffusion treatment : atmosphere ; fused nitrate bath (KNO3 + NaNO3) temperature and time ; 1st step 320$^{\circ}C$, 60min. and 450$^{\circ}C$, 30min. During the diffusion treatment, internetallic compounds of Cu-Sn were formed and these compounds were identified as η, $\varepsilon$ and $\delta$ phase from the outer tin layer. It was considered that the improvement of wear resistance of brasses by the treatment is because of the formation of intemetallic compounds particalarly $\varepsilon$phase which is very hard, between soft tin layer brass.

  • PDF

Strip 형 반도체 부품상에 회전음극 방법에 의한 주석도금에 관한 고찰 (Rotary Cathode Tin Plating on Strip Type Semiconductors)

  • 이완구
    • 한국표면공학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 1975
  • A novel electroplating process is described and effects of anode lay-out thickness distribution and on platiting rate are discussed. Microphotograhic analysis indicates are compact and less "POROUS " than of barrel and rack. With this process production cost reduction and capacity increase could be achieved by a rate of 60% and 97% respectively, as compared to our present barrel plating process. This process disclose a number of beneficial processes such as color coding system on TO-92 package and development of a new tin bath formula.

  • PDF

치과용 합금의 표면 처리가 글라스아이오노머 시멘트와 폴리카르복실레이트 시멘트의 결합력에 미치는 영향 (INFLUENCE OF SURFACE TREATMENTS OF DENIAL ALLOYS ON BOND STRENGTH OF GLASS IONOMER AND POLYCARBOXYLATE CEMENT)

  • 이헌우;우이형;임호남;최부병
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.125-142
    • /
    • 1996
  • Bond strength of four different cements to dental casting alloys which were treated with #600 emery, tin-plating, and $50{\mu}m$ sandblasting were evaluated. The alloy specimens were Type III Gold alloy(Degulor C), Palladium-Silver alloy(Pors on 4), Nickel-Chromium(Rexillium III) alloy, which were embedded in acrylic resin disc. The specimens were treated with #600 emery and tin plating, #600 emery and sandblasting, then bonded using Fuji I, Ketac Cem(Glass ionomer cements), Poly F, Livcarbo(Polycarboxylate cements). The specimens were immersed in water for 24 hours and shear bond strengths were evaluated by Instron Machine. Tin plated, sandblasted, and debonded alloy surfaces were observed using scanning electron microscope. On the basis of this study, the following conclusions could be drawn. 1. In the tin plated alloy group, increase in bond strength of glass ionomer cements was statistically insignificant. 2. In the tin plated alloy group, increase in bond strength of polycarboxylate cements was statistically significant, except nickel-chromium alloy. 3. Sandblasted alloy group showed higher bond strength than that of tin-plated alloy group.

  • PDF

도재소부전장관(陶材燒付前奬冠) 파절수리시(破折修理時) 표면처리(表面處理) 방법(方法)에 따른 수복(修復)레진의 유지력(維持力)에 관(關)한 연구(硏究) (COMPARISON OF RETENTIVE FORCE OF REPAIR RESIN BY VARIOUS SURFACE TREATMENT METHODS IN THE REPAIR OF FRACTURED PORCELAIN FUSED TO METAL CROWN)

  • 임헌송;허성주;조인호
    • 대한치과보철학회지
    • /
    • 제30권1호
    • /
    • pp.73-83
    • /
    • 1992
  • Now composite resin restoration is clinically accepted in the repair of fractured PFM case, many mechanical surface treatment methods are performed to increase retentive force. The main purpose of this study was to compare the retentive force among the possible surface treatments and to insure the best method for the clinical application to the fractures porecelain and the exposed metal surface. To compare and to analyze the retentive force of repair resin, porcelain specimen were divided into 2 groups, etching group and non-etching group, and etching group were treated with 37% $H_3PO_4$, 1.23% APF, 10% HF and non-etching groups were treated with diamond bur, micro-sandblasasting. Also, metal specimens were divided by 2 groups : one was non-precious metal group which was treated with diamond bur, micro-sandblasting and tin plating and electrolytic etching, the other was precious metal group which was composed of micro-sandblasting treatment only and tin plating treatment with micro-sandblasting. Each specimen had been restored for 48 hours and the bond strength of each specimen was calculated with Universal testing machine. The results were as follows : 1. Porcelain specimen had higher bonding strength than metal specimen for the repair resin(P<0.01). 2. In porcelain specimen, 10% HF etching group had the highest bonding strength among etching and non-etching group. 3. Metal specimen treated with micro-sandblasting had highest bonding strength among the non-sandblasting had hightest bonding strength among the non-precious group, tin plating group had higher bonding strength than micro-sandblasting group between the precious metal groups. 4. Bonding strength of tin plating was increased in precious metal group only.

  • PDF

무전해 주석도금을 이용한 구리기둥-주석범프의 형성과 고밀도 플립칩 패키지 제조방법 (Copper Pillar-Tin Bump with Immersion Tin Plating for High-Density Flip Chip Packaging)

  • 조일환;홍세환;정원철;주경완;홍상진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.10-10
    • /
    • 2008
  • Flip chip technology is keeping pace with the increasing connection density of the ICs and is capable of transferring semiconductor performance to the printed circuit board. One of the most general flip chip technology is CPB technology presented by Intel. The CPTB technology has similar benefits with CPB but has simpler process and better reliability characteristics. In this paper, process sequence and structure of CPTB are presented.

  • PDF

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

무연솔더 도금된 리드프레임에서 Sn 위스커의 성장과 구조 (Structure and Growth of Tin Whisker on Leadframe with Lead-free Solder Finish)

  • 김경섭;임영민;유정희
    • 마이크로전자및패키징학회지
    • /
    • 제11권3호
    • /
    • pp.1-7
    • /
    • 2004
  • 주석 도금은 특정 환경하에서 위스커를 발생시키며, 이는 전자부품의 불량을 초래한다. 최근 세계곳곳에서는 환경보호를 위해 "무연"의 사용을 권고하고 있다. 본 논문에서는 두 종류 무연 도금 재료에서 도금 온도와 신뢰성시험 하에서 성장하는 위스커를 평가하였다. 도금 온도가 높아질수록 표면에 형성되는 도금 입자의 크기는 커지고, 위스커의 성장은 작아진다. 또한 온도 순환시험에서 성장한 위스커는 무광택 Sn 도금은 굽은 모양을, 무광택 Sn-Bi에서는 줄무의 모양이 관찰되었고, Sn 도금에 비해 Sn-Bi에서 위스커가 작게 성장하였다. 무광택 Sn 도금된 FeNi42 리드프레임은 TC 300 사이클에서 직경이 $7.0{\~}10.0{\mu}m$이고, 길이가 $25.0{\~}45.0{\mu}m$인 위스커가 성장하였다. 또한 Cu는 300 사이클에서는 표면에 노듈(핵 상태)만이 관찰되었고, 600 사이클에서 길이가 $3.0{\~}4.0{\mu}m$의 위스커로 성장하였다. TC 600 사이클 후 FeNi42는 계면에서 ${\~}0.34{\mu}m$의 얇은 $Ni_3Sn_4$가, Cu에서는 두께가 $0.76{\~}l.14{\mu}m$$Cu_6Sn_5$${\~}0.27{\mu}m$$Cu_3Sn$ 화합물들이 두껍게 성장하였다. 따라서 FeNi42 리드프레임은 열팽창계수의 차이, Cu에서는 금속간 화합물의 형성이 위스커의 성장에 영향을 미치는 주요 인자이다.

  • PDF

Effect of bath conditions and pulse parameters on tin surface finish for microelectronic packaging applications

  • Sharma, Ashutosh;Jung, Do-hyun;Jung, Jae-pil
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.232-233
    • /
    • 2015
  • The effects of various bath conditions such as surfactant concentration, bath pH, bath temperature, agitation of bath; as well as pulse parameters such as cathodic current density, pulse duty cycle and frequency, on the grain size, surface finish, and appearance of the tin plated coatings have been investigated. The plating bath under investigation is an aqueous acidic solution composed of a mixture of $SnSO_4$, $H_2SO_4$, and a surfactant. The bath conductivity and pH are measured by a glass pH electrode. The microstructure of the coatings produced is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface profilometry. XRD analysis shows that the deposits consist of tetragonal ${\beta}$-Sn crystal structure irrespective of plating conditions. The mechanism involved in the morphology evolution in response to various parameters and conditions has also been discussed.

  • PDF

전해도금에 의해 형성된 반도체 금속도금용 주석-납 합금피막의 첨가제 및 전해조건의 영향 (Effect of Additives and Plating Conditions on Sn-Pb Alloy Film of Semiconductor Formed by High Speed Electroplating)

  • 정강효;김병관;박상언;김만;장도연
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.34-41
    • /
    • 2003
  • Effects of additives and plating conditions of high speed electroplating were investigated. The Sn content in electrodeposit was highly decreased with increasing current density from $10A/dm^2$ to $50A/dm^2$, and the current efficiency on the cathode was decreased. The carbon content in the electrodeposit was decreased with increasing current density from $10A/dm^2$ to $30A/dm^2$, however the carbon content was highly increased in the range of $40A/dm^2$$∼50A/dm^2$. The formation of tetravalent tin and stannic oxide sludge was prevented by the addition of gallic acid in the bath. The changing of Sn content in the electrodeposit is caused by the addition of gallic acid.