• 제목/요약/키워드: Tin oxide gas sensor

검색결과 59건 처리시간 0.029초

메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용 (Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor)

  • 김남현;김건중
    • 공업화학
    • /
    • 제18권2호
    • /
    • pp.142-147
    • /
    • 2007
  • 본 연구에서는 주형물질로 $C_{16}TMABr$을 이용하여 염기 조건하에서 메조세공을 갖는 산화주석을 졸-겔법으로 합성하였다. 메조세공 $SnO_2$의 합성 최적조건을 탐사하였으며, 얻어진 시료는 X선회절, 질소흡착 및 투과전자현미경 등으로 분석하여 특성을 조사하였다. 금전극과 백금히터 회로를 알루미나 기재상에 스크린 프린팅 법으로 코팅하고, 합성한 메조세공의 산화주석을 전극상에 접합시켜 하나의 유니트로 구성하였으며, 제작한 센서는 $350^{\circ}C$에서 1~10,000 ppm 농도범위의 메탄과 일산화탄소에 대하여 검지능력을 평가하였다. $SnO_2$ 상에 담지된 팔라듐량의 변화가 이들 측정가스의 검출에 미치는 영향도 검토하였다. 메조세공을 갖는 산화주석은 비다공성의 상용 산화주석에 비하여 동일한 측정 조건하에서 측정가스에 대해 보다 높은 감도를 나타낼 뿐 아니라 안정성이 있으면서도 빠른 응답속도를 보였다.

An Embedded system for real time gas monitoring using an ART2 neural network

  • Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, In-Soo;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.479-482
    • /
    • 2003
  • We propose a real time gas monitoring system for classifying various gases with different concentrations. Using thermal modulation of operating temperature of two sensors, we extract patterns of gases from the voltage across the load resistance. We adopt the relative resistance as a pre-processing method and an ART2 neural network as a pattern recognition method. The proposed method has been implemented in a real time embedded system with tin oxide gas sensors, TGS 2611, 2602 and an MSP430 ultra-low power microcontroller in the test chamber.

  • PDF

전기방사된 주석산화물 나노섬유의 공정 변수에 따른 직경 및 형상 제어 연구 (Electrospun Tin Oxide Nanofibers with a Controlled Diameter and Morphology)

  • 장대환;이재은;좌용호;이영인
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.663-670
    • /
    • 2014
  • Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from $200^{\circ}C$ to $800^{\circ}C$ has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

산화주석 기반의 아세토니트릴 검지용 박막형 가스센서 (Thin Film Gas Sensors Based on Tin Oxide for Acetonitrile)

  • 최낙진;반태현;곽준혁;임연태;주병수;김재창;허증수;이덕동
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.218-223
    • /
    • 2004
  • Thin film gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is acetonitrile ($CH_{3}CN$) that is simulant gas of blood agent gas. Sensing materials are $SnO_{2}$, $SnO_{2}$/Pt, and (Sn/Pt)oxidation with thickness from $1000{\AA}$ to $3000{\AA}$. Sensor was consisted of sensing electrode with interdigit (IDT) type in front side and a heater in back side. Its dimension was $7{\times}10{\times}0.6mm^{3}$. Fabricated sensor was measured as flow type and monitored real time using PC. The optimal sensing material for $CH_{3}CN$ was {Sn($3000{\AA}$)/Pt($30{\AA}$)}oxidation and its sensitivity and operating temperature were 30%, $300^{\circ}C$ in $CH_{3}CN$ 3 ppm.

반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정 (Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART)

  • 이정헌;조정환;전기준
    • 전자공학회논문지SC
    • /
    • 제43권4호
    • /
    • pp.21-29
    • /
    • 2006
  • 본 논문에서는 혼합가스의 종류를 구분하고 농도를 추정하기 위하여 퍼지 ARTMAP 신경회로망과 퍼지 ART 신경회로망을 각각 사용하였다. 온도변환 구동방식의 반도체식 가스센서를 이용하여 $NH_3,\;H_2S$, 그리고 그들의 혼합가스에 대해서 데이터를 획득하였고, 데이터들을 제안한 패턴인식방법의 입력으로 사용하기 위해서 전 처리 과정을 통해 데이터들의 차원을 줄여주었다. 실험을 통해서 본 논문에서 사용한 방법이 이전의 다른 방법들과 비교하여 학습시간을 줄이면서 좀더 안정된 농도 추정 성능을 보여줌을 확인하였다.

양극산화법으로 제작된 나노 다공성 주석 산화물 박막 (Nano Porous Tin Oxide Film Fabricated by Anodization)

  • 문규식;천세준;노희규;천승철;박성용;이로운;박용준;최원열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.328-328
    • /
    • 2007
  • $SnO_2$ has a high potential for electric and electronic applications. We have anodized pure tin metal and nano porous tin oxide film was obtained on pure Sn. Nano porous tin oxide were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 100 V. Pore size of ~100nm was observed by FE-SEM. Pore sizes as a function of applied voltage and anodizing time were characterized. We obtained nano porous tin oxide film having an uniform pore size at low temperature. High specific surface area of $SnO_2$ will be very useful for gas sensor, lithium battery, and dye sensitized solar cell.

  • PDF

양극산화법에 의한 다공성 SnO2 피막 (Porous SnO2 Films Fabricated Using an Anodizing Process)

  • 한혜정;최재호;민석홍
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.503-510
    • /
    • 2006
  • The measurement of specific gases is based on the reversible conductivity change of sensing materials in semiconductor type gas sensors. For an application as gas sensors of high sensitivity, porous $SnO_2$ films have been fabricated by anodizing of pure Sn foil in oxalic acid and characteristics of anodic tin oxide films have been investigated. Pore diameter and distribution were dependent on process conditions such as electrolyte concentration, applied voltage, anodizing temperature, and time. Characteristics of anodic films were explained with current density-time curves.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • 백은하;김소진;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF