• Title/Summary/Keyword: Tin Oxide Layer

Search Result 382, Processing Time 0.027 seconds

Effects of Seed Layer and Thermal Treatment on Atomic Layer Deposition-Grown Tin Oxide

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.222-225
    • /
    • 2010
  • The preparation of tin oxide thin films by atomic layer deposition (ALD), using a tetrakis (ethylmethylamino) tin precursor, and the effects of a seed layer on film growth were examined. The average growth rate of tin oxide films was approximately 1.2 to 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreased at the substrate temperature at $200^{\circ}C$. A seed effect was not observed in the crystal growth of tin oxide. However, crystallinity and the growth of seed material were detected by XPS after thermal annealing. ALD-grown seeded tin oxide thin films, as-deposited and after thermal annealing, were characterized by X-ray diffraction, atomic force microscopy and XPS.

Effect of a seed layer on atomic layer deposition-grown tin oxide

  • Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.128-128
    • /
    • 2009
  • The effect of seed layer on the preparation of tin oxide thin film by ALD using tetrakis(ethylmethylamino) tin precursor was examined. The average growth rate of tin oxide film is about 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreases at the substrate temperature at $200^{\circ}C$. The seed effect was not observed in crystal growth of thin oxide. However, the crystalline growth of seed material in tin oxide was detected by thermal annealing. ALD-grown seeded tin oxide thin film after thermal annealed was characterized by ellipsometry, XRD, AFM and XPS.

  • PDF

The Fabrication of Tin Oxide Films by Atomic Layer Deposition using Tetrakis(Ethylmethylamino) Tin Precursor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.200-202
    • /
    • 2009
  • Tin oxide thin films were prepared by atomic layer deposition using a tetrakis(ethylmethylamino) tin precursor without any seed layer. The average growth rate of tin oxide film is about 1.2 A/cycle from $50{^{\circ}C}$ to $150{^{\circ}C}$. The rate decreases rapidly at a substrate temperature of $200{^{\circ}C}$. ALD-grown tin oxide thin film was characterized with the use of XRD, AFM and XPS. Due to a thermal annealing effect, the surface roughness and the tin amount in the film composition are slightly increased.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • Kim, Do-Hyeon;Kim, Gi-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF

Effects of surface characteristics of electrolytic tinplate on frictional properties during ironing operaration of 2-piece can-making process (전기주석도금강판의 표면특성이 투피스캔 제관공정의 아이어닝 가공시 마찰특성에 미치는 영향)

  • 김태엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Non-passivated electrolytic tinplates withour conventinal chemical treatment self-oxidize in ambient atmosphere to from yellow stain on the outermost surface during the long-term storage. The degree of yellowness of the stain increased linerly with the oxide thickness due to the interfeefence color of the $SnO_2$ Even though the thickness of the oxide layer was very thin, less than 100$\AA$ , it exerts an undesirable influence on the can-making processes, particularly the stripping behavior after ironing. Investigations were carried out on the morphologies of the coating layer, the changes in oxide thickness during successive can-making processes and the averge friction coefficients with the different oxide thinkness. These oxide layers were broken up and distributed within the bulk tin coating during the ironing process. This redistribution of the oxide layer prvented smooth pressing-aside of the tin coating layer, resulting in an increase in the ironing friction coefficient. As the friction was increased, the residual stress along the can wall thinkness(i.e., the hoop stress) was also increased. Due to both the oxibe layer accumulation, which increased the friction coefficient, and the hoop stress, can stripping efficiency without roll-back is reduced.

  • PDF

Characteristics and fabrications of high brightness organic light emitting diode(OLED) (고휘도 유기발광소자 제작 및 특성)

  • Jang, Yoon-Kee;Lee, Jun-Ho;Nam, Hyo-Duk;Park, Chin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.316-319
    • /
    • 2001
  • Organic light emitting diodes(OLEDs) with a hole injection layer inserted between Indium-Tin-Oxide(ITO) anode and hole transport layer were fabricated. The effect of plasma treatment on the surface properties of Indium-Tin-Oxide(ITO) anode were studied. The electrical and optical characteristics of the fabricated organic light emitting diodes(OLEDs) were also studied. The diode including of plasma treated ITO substrate and the hole injection layer, which showed the luminance of 5280 $cd/m^{2}$ at 8 V

  • PDF

Characteristics and fabrications of high brightness organic light emitting diode(OLED) (고휘도 유기발광소자 제작 및 특성)

  • 장윤기;이준호;남효덕;박진호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.316-319
    • /
    • 2001
  • Organic light emitting diodes(OLEDs) with a hole injection layer inserted between Indium-Tin-Oxide(ITO) anode and hole transport layer were fabricated. The effect of plasma treatment on the surface properties of Indium-Tin-Oxide(ITO) anode were studied. The electrical and optical characteristics of the fabricated organic light emitting diodes(OLEDs) were also studied. The diode including of plasma treated ITO substrate and the hole injection layer, which showed the luminance of 5280 cd/㎡ at 8 V

  • PDF

The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure (스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구)

  • Lee, Hong Woo;Yang, Bong Seob;Oh, Seungha;Kim, Yoon Jang;Kim, Hyeong Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

Electrical Properties of Transparent Indium-Tin-Zinc Oxide Semiconductor for Thin-Film Transistors

  • Lee, Gi-Chang;Choe, Jun-Hyeok;Han, Eon-Bin;Kim, Don-Hyeong;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.159-159
    • /
    • 2008
  • 투명전도체 (transparent conducting oxides: TCOs) 는 일반적으로 $10^3\Omega^{-1}Cm^{-1}$의 전도도, 가시광 영역에서 80%이상의 투명성을 가지는 재료로서, 액정 박막 표시 장치(TFT-LCD), 광기전성 소자, 유기 발광 소자, 에너지 절약 창문, 태양전지(sollar cell) 등 전극으로 사용되고 있다. 최근에는 TCO의 전도도특성을 조절하여 반도성특성을 가진 투명 산화물 반도체(transparent oxide semiconductor: TOS) 을 이용한 박막 트랜지스터 연구가 활발히 진행 중이다. 기존의 실리콘을 기반으로 하는 박막 트랜지스터의 낮은 이동도, 불투명성의 특성을 가지고 있지만, 산화물 박막트랜지스터는 높은 이동도를 발현 할 수 있을 뿐만 아니라, 넓은 밴드갭 에너지를 갖는 산화물을 이용하므로 투명한 특성도 발현 할 수 있어 차세대 디스플레이의 구동소자로서 응용연구가 되고 있다. 이에 본 연구에서는 박막트랜지스터 channel layer로서의 Indium-Tin-Zinc oxide 적용특성을 조사하였다. Indium, Tin, Zinc 의 혼합비율을 다양하게 조절하여 타겟을 제작하였다. 이를 RF magnetron sputtering 를 이용하여 박막으로 성장시켰으며, 기판으로는 glass 기판을 사용하였다. 박막 성장시 아르곤과 산소의 비율을 다양하게 조절하였다. 성장시킨 박막은 Hall effect, Transmittance, Work function, XRD등을 이용하여 전기적, 광학적, 구조특성을 평가하였다. Indium-Tin-Zinc Oxide(ITZO) 을 channel layer로 사용하여 Thin-film transistor 을 제작하여, TFT의 I-V 및 stability특성을 평가하였다.

  • PDF