• Title/Summary/Keyword: Timoshenko beams

Search Result 179, Processing Time 0.017 seconds

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.347-371
    • /
    • 2011
  • This paper focuses on post-buckling analysis of Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam element approximation. Six types of support conditions for the beams are considered. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, the relationships between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress distributions through the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

Timoshenko theory effect on the vibration of axially functionally graded cantilever beams carrying concentrated masses

  • Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.703-711
    • /
    • 2018
  • In this paper is studied the effect of considering the theory of Timoshenko in the vibration of AFG beams that support ground masses. As it is known, Timoshenko theory takes into account the shear deformation and the rotational inertia, provides more accurate results in the general study of beams and is mandatory in the case of high frequencies or non-slender beams. The Rayleigh-Ritz Method is employed to obtain approximated solutions of the problem. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study. The incidence of the Timoshenko theory is analyzed for different cases of beam slenderness, variation of its cross section and compositions of its constituent material, as well as different amounts and positions of the attached masses.

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

The use of generalized functions modeling the concentrated loads on Timoshenko beams

  • Falsone, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.385-390
    • /
    • 2018
  • An incongruity is underlined about the analysis of Timoshenko beams subjected to concentrated loads modelled through the use of generalized functions. While for Euler-Bernoulli beams this modeling always leads to effective results, on the contrary, the contemporary assumptions of concentrated external moment, interpreted as a generalized function (doublet), and of shear deformation determine inconsistent discontinuities in the deflection laws. A physical/theoretical explanation of this not-neglecting incongruity is given in the text.

Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudo spectral Method

  • Lee, Jin-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1753-1760
    • /
    • 2005
  • The pseudo spectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

Out-of-plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 2004
  • The pseudospectral method is applied to the analysis of out-of$.$plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions. The present method gives good accuracy with only a limited number of collocation points.

In-Plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1156-1163
    • /
    • 2003
  • The pseudospectral method is applied to the analysis of in-plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of rectangular and circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions and the results are compared with those by transfer matrix method. The present method gives good accuracy with only a limited number of collocation points.

Effect of Axial Loads on Natural Frequencies of Timoshenko Beam (축하중이 티모센코 보의 고유진동수에 미치는 영향)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.580-586
    • /
    • 2011
  • This paper addresses the effect of transverse shear deformation and rotary inertia on the natural frequency of beams under axial loads. It has been reported in the author's paper using a finite element analysis that the Timoshenko effect in a rotating disk deceases and then increases again with increasing rotation speed. To validate the phenomenon, the simply-supported beams under uniform tension are selected in this study since they have exact solutions in vibration problem. The results show that the axial tension in beams would not make the Timoshenko effect decrease monotonically but could make the effect increase again unlike the results reported in the other studies for beams.