• Title/Summary/Keyword: Timing offset

Search Result 193, Processing Time 0.021 seconds

Time-Division-Multiplexing Tertiary Offset Carrier Modulation for GNSS

  • Cho, Sangjae;Kim, Taeseon;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.147-156
    • /
    • 2022
  • In this paper, we propose Time-Division-Multiplexing Tertiary Offset Carrier (TDMTOC), a novel GNSS modulation based on Tertiary Offset Carrier (TOC) modulation. The TDMTOC modulation multiplexes two three-level signals (i.e., -1, 0, and 1) while crossing over time, and is a type of TOC modulation designed specifically for signal multiplexing. The proposed modulation generates TDMTOC subcarriers of two different phases by simply combining two Binary Offset Carrier (BOC) subcarriers by addition or subtraction. TDMTOC has better correlation and spectral properties than conventional BPSK, BOC, and MBOC modulation techniques, and has good power and spectral efficiency since it can multiplex signals without power loss similar to time division multiplexing. To prove this, we introduce the multiplexing process of TDMTOC, and compare TDMTOC with Binary Phase Shift Keying (BPSK), BOC, Composite BOC (CBOC), and Time Multiplexed BOC (TMBOC) that are currently serviced in GNSS by simulations of various aspects. Through the simulation results, we prove that TDMTOC has better correlation property than modulations currently used in GNSS, less intersystem interference due to its wide spectrum property, and robustness in multipath and noise channel environments.

Hybrid Synchronization Scheme for Multi-Carrier Communication Systems

  • Kim, Eung-Sun;Park, Sang-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.223-225
    • /
    • 2012
  • In this paper, we develop a symbol/frame time and carrier frequency synchronization scheme for multi-carrier signaling in wireless mobile channels. The proposed scheme achieves simultaneous time synchronization and carrier frequency offset estimation. Simulation results show that the frequency offset of multiple sub-carrier spacings can be estimated and that performance is improved with robustness regardless of the cyclic prefix length.

Implementation of Timing Synchronization in Vehicle Communication System

  • Lee, Sang-Yub;Lee, Chul-Dong;Kwak, Jae-Min
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2010
  • In the vehicle communication system, transferred information is needed to be detected as possible as fast in order to inform car status located in front and rear side. Through the moving vehicle information, we can avoid the crash caused by sudden break of front one or acquire to real time traffic data to check the detour road. To be connecting the wireless communication between the vehicles, fast timing synchronization can be a key factor. Finding out the sync point fast is able to have more marginal time to compensate the distorted signals caused by channel variance. Thus, we introduce the combination method which helps find out the start of frame quickly. It is executed by auto-correlation and cross-correlation simultaneously using only short preambles. With taking the absolute value at the implemented synch block output, the proposed method shows much better system performance to us.

Evaluation of Daily Jump Compensation Methods for GPS Carrier Phase Data

  • Lee, Young Kyu;Yang, Sung-Hoon;Lee, Chang Bok;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • In this paper, we described the timing-offset comparison results between various daily jump compensation methods for GPS carrier phase (CP) measurement data. For the performance comparison, we used about 70 days GPS measurement data obtained from two GPS geodetic receivers which share the reference 1 PPS and RF signals and closely located in each other within a few meters. From the experiment results, the followings were observed. First, daily jumps existed in CP measurements depend on not only the environment but also the receiver which will make a full compensation be very hard or impossible. Second, clock bias can be occurred in the case of using a simple compensation with accumulation of daily jumps but it could be used in a short-period frequency comparison campaign (less than about 7 days) despite of its drawback.

A Study of Timing Synchronization Technique for 802.16e based System (802.l6e 기반 시스템을 위한 시간동기화 방법에 관한 연구)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.451-453
    • /
    • 2005
  • In this paper, a preamble structure and a timing synchronization method for 802.16e based system are developed. The performances of the timing offset estimation in multipath fading channel is compared in terms of absolute mean. The simulation result shows that the proposed method has smaller mean.

  • PDF

Design of burst receiver with symbol timing and carrier synchronization (심벌동기와 반송파동기를 가진 버스트 수신기의 설계)

  • 남옥우
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • In this paper we describe the design of symbol timing and carrier synchronization algorithms for burst receiver. The demodulator consists of digital down converter, matched filter and synchronization circuits. For symbol timing recovery we use modified Gardner algorithm. And we use decision directed method for carrier phase recovery. For the sake of performance analysis, we compare simulation results with the board implemented by FPGA which is APEX20KE series chip for Alter. The performance results show it works quite well up to the condition that a frequency offset equal to 0.1% of symbol rate.

  • PDF

Non-Pilot-Aided Timing Offset Estimation for OFDM Systems with Frequency Diversity

  • Yang, Hyun;You, Young-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-177
    • /
    • 2006
  • This letter deals with non-pilot-aided symbol timing estimation methods in an orthogonal frequency division multiplexing (OFDM) system. To do this, OFDM system uses a frequency diversity scheme over two consecutive data symbols. Our approach can be viewed as an expansion of Schmidl's and Minn's correlation methods. Using the OFDM signal equipped with frequency diversity, however, symbol timing is accurately estimated without additional training symbol and a second-order diversity gain is achieved.

  • PDF

Design of AGC and DC Offset Remover for Cable Modem (케이블 모뎀을 위한 AGC 및 DC offset Remover 설계)

  • 김기윤;최형진
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.775-779
    • /
    • 1999
  • This paper presents design of AGC(Automatic Gain Control) and DC offset remover suitable for cable modem which makes use of QAM(Quadrature Amplitude Modulation) scheme. Since QAM has multi-level signal characteristic, for high-order QAM, the constellation is dense and the distance of decision boundary between adjacent symbols is short. So AGC and DC offset remover must be designed optionally for preventing performance degradation. AGC is designed into feedback type and is related to the STR(Symbol Timing Recovery)and Paff interpolation algorithm. Whereas AGC need to perform average power detection during many symbols by comparison with the reference power, DC offset remover uses only the instant polarity decision such that simple implementation can be achieved with good performance. Though the AGC and DC offset remover are simulated here only for 256 QAM scheme for convenience'sake, it can be applied to other multi-level QAM or PSK modulation scheme.

  • PDF

Performance Estimation of KPST to GPS Time Offset for GNSS Interoperability to Increase Navigational Performance

  • Lee, Young Kyu;Yang, Sung-hoon;Lee, Ho Seong;Lee, Jong Koo;Hwang, Sang-wook;Rhee, Joon Hyo;Lee, Ju Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.191-198
    • /
    • 2022
  • In order to increase the practical use and navigational application performance of the Korean Positioning System (KPS), it is required to provide interoperability with other Global Navigation Satellite System (GNSS). This kind of interoperability can be obtained by broadcasting the time offset between KPS and GNSS using a KPS navigation message. With the assumption that KPS Time (KPST) will be generated by the similar method and equipment of UTC(KRIS), the overall behavior of KPST will be close to that of UTC(KRIS). Therefore, the time offset between KPST and GPS Time (GPST) is estimated by using UTC(KRIS) instead of KPST because KPST can not available at the present time. In this paper, we describe the estimation results of the KPS to GPS Time Offset (KGTO) obtained by using a GNSS time transfer receiver which reference inputs are fed from UTC(KRIS). The estimated KGTO performance is compared to the time offset between UTC(KRIS) and UTC(USNO) which is used to generate GPST and considered as the real GPST. The time offset between UTC(KRIS) and UTC(USNO) is obtained by using the Bureau International des Poids et Mesures (BIPM) Circular T report. From the results, it is observed that KGTO can be estimated under 10 ns with the assumption that KPST will be generated by a similar method of UTC(KRIS) generation.

Performance Evaluation of Symbol Timing Recovery Algorithm for S-DMT Cable Modern (S-DMT 케이블 모뎀을 위한 심볼 타이밍 복원 알고리즘 성능평가)

  • Cho Byung-Hak
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we propose and evaluate symbol timing recovery algorithm for S-DMT cable modern, which supports more channels and better quality symmetric mutimedia service over HFC network. We adopt timing recovery algorithm of PN sequence insertion in time domain and evaluate the performance of it in various noise channel such as AWGN, ISI, impulse. We verified that performance of this algorithm is depends on the channel noise environment and sampling clock offset and that over 10 dB degradation of Eb/No is occurred at the timing failure probability of $10^3$ in the composite noise channel of AWGN, ISI, and impulse in comparison with impulse noise-alone channel. finally, we verified that this algorithm showed good timing failure probability in case of sampling clock optimization was performed in advance.

  • PDF