• Title/Summary/Keyword: Timelike

Search Result 37, Processing Time 0.022 seconds

On Interpretation of Hyperbolic Angle

  • Aktas, Busra;Gundogan, Halit;Durmaz, Olgun
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.375-385
    • /
    • 2020
  • Minkowski spaces have long been investigated with respect to certain properties and substructues such as hyperbolic curves, hyperbolic angles and hyperbolic arc length. In 2009, based on these properties, Chung et al. [3] defined the basic concepts of special relativity, and thus; they interpreted the geometry of the Minkowski spaces. Then, in 2017, E. Nesovic [6] showed the geometric meaning of pseudo angles by interpreting the angle among the unit timelike, spacelike and null vectors on the Minkowski plane. In this study, we show that hyperbolic angle depends on time, t. Moreover, using this fact, we investigate the angles between the unit timelike and spacelike vectors.

BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE

  • Xu, Chuanyou;Cao, Xifang;Zhu, Peng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.377-394
    • /
    • 2015
  • In this paper, we generalize some results about Bertrand curves and Razzaboni surfaces in Euclidean 3-space to the case that the ambient space is Minkowski 3-space. Our discussion is divided into three different cases, i.e., the parent Bertrand curve being timelike, spacelike with timelike principal normal, and spacelike with spacelike principal normal. For each case, first we show that Razzaboni surfaces and their mates are related by a reciprocal transformation; then we give B$\ddot{a}$cklund transformations for Bertrand curves and for Razzaboni surfaces; finally we prove that the reciprocal and B$\ddot{a}$cklund transformations on Razzaboni surfaces commute.

SPLIT QUATERNIONS AND ROTATIONS IN SEMI EUCLIDEAN SPACE E42

  • Kula, Levent;Yayli, Yusuf
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1313-1327
    • /
    • 2007
  • We review the algebraic structure of $\mathbb{H}{\sharp}$ and show that $\mathbb{H}{\sharp}$ has a scalar product that allows as to identify it with semi Euclidean ${\mathbb{E}}^4_2$. We show that a pair q and p of unit split quaternions in $\mathbb{H}{\sharp}$ determines a rotation $R_{qp}:\mathbb{H}{\sharp}{\rightarrow}\mathbb{H}{\sharp}$. Moreover, we prove that $R_{qp}$ is a product of rotations in a pair of orthogonal planes in ${\mathbb{E}}^4_2$. To do that we call upon one tool from the theory of second ordinary differential equations.

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ON SEMI-RIEMANNIAN MANIFOLDS

  • Jung, Yoon-Tae;Kim, Yun-Jeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.317-336
    • /
    • 2000
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future (or past) complete Lorentzian metrics on $M=(-{\infty},{\;}\infty){\;}{\times}f^N$ with specific scalar curvatures.

  • PDF

PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR CURVATURE ON SEMIRIEMANNIAN MANIFOLDS(I)

  • Jung, Yoon-Tae;Kim, Yun-Jeong;Lee, Soo-Young;Shin, Cheol-Guen
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future(or past) complete Lorentzian metrics on $M{\;}={\;}[a,{\;}{\infty}){\times}_f{\;}N$ with specific scalar curvatures.

  • PDF

VOLUME PROBLEMS ON LORENTZIAN MANIFOLDS

  • Kim, Seon-Bu
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.163-173
    • /
    • 1995
  • Inspired in [2,9,10,17], pp. E. Ehrlich and S. B. Kim in [4] cultivated the Riccati equation related to the Raychaudhuri equation of General Relativity for the stable Jacobi tensor along the geodesics to extend the Hawking-Penrose conjugacy theorem to $$ f(t) = Ric(c(t)',c'(t)) + tr(\sigma(A)^2) $$ where $\sigma(A)$ is the shear tensor of A for the stable Jacobi tensor A with $A(t_0) = Id$ along the complete Riemannian or complete nonspacelike geodesics c.

  • PDF

FOCAL POINT IN THE C0-LORENTZIAN METRIC

  • Choi, Jae-Dong
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.951-962
    • /
    • 2003
  • In this paper we address focal points and treat manifolds (M, g) whose Lorentzian metric tensors g have a spacelike $C^{0}$-hypersurface $\Sigma$ [10]. We apply Jacobi fields for such manifolds, and check the local length maximizing properties of $C^1$-geodesics. The condition of maximality of timelike curves(geodesics) passing $C^{0}$-hypersurface is studied.ied.

LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE

  • Park, Joon-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.41-61
    • /
    • 2008
  • We study Lorentzian surfaces with the constant Gaussian curvatures or the constant mean curvatures in the 3-dimensional Lorentzian space and their transformations. Such surfaces are associated to the Lorentzian Grassmannian systems and some transformations on such surfaces are given by dressing actions on those systems.