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VOLUME PROBLEMS ON LORENTZIAN MANIFOLDS

KiM, SEoN-Bu

1. Introduction

Inspired in [2,9,10,17], P. E. Ehrlich and S. B. Kim in [4] cultivated
the Riccati equation related to the Raychaudhuri equation of General
Relativity for the stable Jacobi tensor along the geodesics to extend the
Hawking-Penrose conjugacy theorem to

f(t) = Ric(c(t)', (1)) + tr(a(A)?)

where o(A) is the shear tensor of A for the stable Jacobi tensor A with
A(tg) = Id along the complete Riemannian or complete nonspacelike
geodesics c.

On the other hand, when we investigate some properties of local dis-
tance functions on Lorentzian manifolds of positive Ricci curvature, we
need a proper concept of “completeness” as usually given in Riemann-
ian manifolds. There is a similar concept called “geodesic completeness”.
However, it is not helpful because the Hopf-Rinow theorem does not hold
on Lorentzian manifolds. Moreover, it is well-known that the positive
Ricci curvature bounded away from zero on all timelike vectors tends to
produce nonspacelike geodesic incompletenes, which is a kind of singu-
larity theorem on space-times, cf. Theorem 11.41 in [1]. Thus, we give
the hypothesis called “global hyperbolicity” to the Lorntzian manifolds
in this paper since the global hyperbolicity guarantees the existance of
a timelike maximal geodesic segment between any pair of chronological
related points, cf. [1].
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There are some papers in Riemannian geometry for the local distance
functions related to the Riccati equations given by Eschenberg, Karcher,
and Meyer [5,11,14]. To establish the theory for the local distance func-
tions on Lorentzian manifolds, we start with the Jacobi tensor along the
timelike geodesic starting from a point of the given globally hyperbolic
space-time,

Further, the volume problem on Lorentzian or semi-Riemannian man-
ifolds has been an undeveloped area since it is hard to define the geomet-
ric volume of any compact set even O’Neill in [15] defined the volume
element on an oriented semi-Riemannian manifold, and since Shimming
and Matel-Kaminska in [16] obtained some results of the volume problem
where they have just tried less geometrically intrinsic objects called ex-
ponentiated “truncated light cones” on Lorentzian or semi-Riemannian
manifolds. Moreover, we can not investigate the local distance functions
for null geodesics since any distance along null geodesics is zero.

Thus we construct a compact set given by a geodesic wedge contained
in the chronological future I'*(p) for some point p in a globally hyperbolic
space-time M, and then we define the volume of the geodesic wedge to
investigate some volume problems.

2. Preliminaries

Let ¢ : (a,b) — (M,g) denote unit speed timelike geodesic with
g(¢',c") = —1in a Lorentzian manifold (M, g) and let N(c(t)) denote the
(n — 1)-dimensional subspace of T.(;) M consisting of tangent vectors or-
thogonal to ¢'(¢). A (1,1)-tensor field A(t) on V1(c) is a linear map A =
A(t) : N(c(t)) — N(c(t)) for each t in (a,b). For the orthonormal basis of
parallel fields {P;} for N(c) let A(P;) = 3" ;;(¢)P;. Then the covariant
derivative A"(P;) = ) ¢l (t)P;. And RA(t)(v) = R(A(t)(v),c' (1)) (t)
where R is the curvature tensor field on N(c¢) and the adjoint A* is given
by g(A*(t)(v),w) = g(A(t)w,v) for all v,w € N(c(t)).

A smooth (1,1) tensor field A(t) which satisfies 4" + RA = 0 and
ker(A(t)) N ker(A'(t)) = {0} for all ¢ in (a,b) is called a Jacobs tensor
field and the Jacobi tensor 4 is called a Lagrange tensor if it satisfies the
further condition (A')*A — A*A' = 0, which is satisfied if A(t) = 0 for

some t in (a, b).
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We may choose two different kinds of Jacobi tensors to study a level
surface f~!(#p) along a local distance function f : M — R. The first is
the smooth Jacobi tensor field A along c satisfying the initial conditions
A(to) = 0, A’(to) = ¢d which is called the conjugate Jacodi tensor. Then
if v € ker(A(t1)) and P is the parallel field along ¢ with P(c(t1)) =
v, the vector field J := A(P) is a nontrivial Jacobi field along ¢ with
J(to) = J(t1) = 0. In this case, we have [tr(A’A~!(¢,))| = 400, This
first has been given in 7] for Riemannian or timelike geodesics and in
[12,13] for nonspacelike geodesics in Lorentzian, and, more generally, in
pseudo-Riemannian manifolds.

We now consider a second Jacobi tensor along ¢ which is assumed that
c is free of conjugate points. Then the stable Jacobi tensor field A along
c is constructed as a limit as s — +o00 of Jacobi tensors D, satisfying
the boundary value conditions Dy(t9) = id, D,(s) = 0, but D'(s) # 0,
cf. [3,6,8]. In this case, we may assume that ¢ is defined on (—o0, +00).
It is very useful to the conjugate point along ¢ in the indirect method as
in [4].

In both of these methods, however, the technique of passing from
the Jacobi equation A” + RA = 0 to the associated Riccati inequality
(in Riemannian geometry) or Riccati equation (in General Relativity)
for the trace of the tensor B := A'A~! defined at points where A4 is
nonsingular has been found to be useful.

Let A(t) then, be a Lagrange tensor along the nonspacelike or Rie-
mannian geodesic ¢ : (a,b) — (M, g). Except at the isolated parameter
values t where det A(t) = 0, the self adjoint tensor B = A’A~! may be
formed. Then the ezpansion 6( A) and shear tensor o( A) of A are defined
by

0 =0(A):=tr(B), c =0(A):=B —ab(A)Id

where a = 1/(n—1) if ¢ is Riemannian or timelike. Then at points where

det A(t) # 0, as Lemma 1 in [7] one has
(2.1) §=tr(A'A™") = (det(A))'/ det(A).
Thus for a Jacobi tensor A with A(tg) = 0,A4'(ty) = Id,t = t; # 0

is conjugate to to if |6(t)] — +oo as t — t;. Note also that since o(A)
is self-adjoint, tr(¢?) > 0 and equality holds at some ¢ iff o(A)(¢) = 0.



166 Kim, Seon-Bu
Moreover, B’ = (A'A~!) yields
(2.2) B'=A"AT' - AAT'AA7' = —R(.,¢')¢' - Bo B,

a Riccati-type equation for B. Then using identities B = d(A)—af(A)Id
and ' = (tr(B))' = tr(B') = —tr(R) — tr(B?) = —Ric(c', ') — tr(B?),
one obtains the so-called Raychaudhuri equation of General Relativity

(2.3) ' + a8® + (Ric(c', ') + tr(o(A)?)) = 0.

Thus starting with the Jacobi equation A" + RA = 0, forming B =
A’A7!, we have obtained a Riccati equation 8’ +a8%+ f4 = 0 for §(A) =
tr(B) where

(2.4) F(£) = fa(t) = Ric(c'(t), ¢'(1)) + tr((a(A)1))*).

Now, let M™ be a globally hyperbolic space-time with Ric(v,v) >
(n — 1)k > 0 for any unit timelike vecots v and for some k > 0.

For p € M, let Fut(T,M) be a set of all future directed timelike
vectors v in T, M such that exp, v exists, and set cut,(p) be the shortest
length from p to the cut point of p in the direction v. Then we may have
the distance function f : exp,(Fut(T,M)) — R given by f(q) = d(p,q).
For tg € f(exp,(Fut(T,M))), set E := {v € FutiT,M)| < v,v >=
—1, exp, tv is defined for 0 <t < tg 4 € < cut,(p) for some € > 0}.

For any v € E, we have a radial geodesic 7,(t) = exp, tv with v,(0) =
P, 7,(0) = v. Then we have a normal variation & of v,(t) = exp,tv
given by

(2.5) a(t, s) = exp, {{v + sw)

with a*|(t0,0)(aé—) = Dy,v exp,(tow) for any w € Ty, (1,)f ' (to).

In this paper, we don’t use the stable Jacobi tensor along v, starting
from the level set f~!(t¢) since we can not find a stable Jacobi tensor
in the space-time of constant curvature & > 0. For, we don’t have
any solution . (t) = lim,_ o @s(t) of the equation ! + ke, = 0 with
ps(0) = 1, ¢%(s) = 0. Instead, we will compare the Riccati equations
arising between the space-time of the Ricci curvature and the space-time
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of constant curvature. Hence, we may choose a conjugate Jacobi tensor
field A along ~, satisfying A(0) =0, A'(0) = Id.

Let D : Ty, (40)f " (t0) = Ty, (20) f ~(to) be any invertible linear trans-
formation and suppose P is a parallel field in v,(#))* with P(t,) = w
for w € Ty, (10) f " (%), A(to) = D. Then

(2.6) (AP)(t) = A(t)P(t) = 1,0 (AP)(to) = au(t,0)(Dw).

Clearly, J = AP is a Jacobi field along v,. Since D is invertible, the
equation (2.6) induces a unique variation of v,(t) with a(tg,0) = 7,(to).
Moreover, the conjugate Jacobi tensor A along v, may be assumed
A(t) # 0 for t € (2o, cut,(p)).

Now, f~(to) is the spacelike hypersurface since its grad(f) is time-
like i.e., < (grad(f),grad(f) >= —1. Then, as is well known, the inte-
gral curves of grad(f) are unit speed maximal geodesics and the level
submanifolds {f~'(%o)} are smooth hypersurfaces with N := grad(f)
serving as a unit normal field. Given N on M, define the shape operator

L:Tp(f7(t)) = T,(f 7 (o))

by L(v) = -V, ,N in T,M, ie.,L = —~VN. Since, A'P = (AP)' =
VNI =V ;N =VN(AP), A' =VNoA, and thus, A’/A~! = VYN = —L.
Since L is self-adjoint, the Wronskian W(4,A) = (A')*A — A*A' =
0. Thus, A is a Lagrange tensor. Putting B = A'’A~', we have the
expansion tensor § and the shear tensor o of A.

Note that, setting E(t) = Ait) for t # 0, using A'(0) = Id, we
have }irr(l) E(t) = Id, and %in% E'(t) = 0. Further, }inll] tB(t) = Id, and

}ixré(tB(t))' = 0. Hence, tB(t) = Id + O(¢?), and thus,

(2.7). a(0) = 0

(cf. Lemma 3 in [7]). As (2.3), one obtains the so-called Raychaudhuri
equation of General Relativity

(2.8) 6+~ + Ric(a}, ) + tr(s?) = .
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6
on (0, cut,(p)). Putting b = —

: ! [} 2
(29) bl +b2 + ch(7va7v) + tT‘(O’ )

n—1 n—1

= 0.

Moreover, A(0) = 0 implies |5(0)| = +oo. Further, since tr(c?) > 0,
using the Ricci curvature condition, we obtain the inequality

(2.10) b4+ 8+ k<0

Now, let @ be the space-time of constant curvature k > 0. Then
we have a conjugate Jacobi tensor A along any geodesic with A(0) =
0, A'(0) = Id which induces a Riccati equation as follows;

1 . c e
At first, we have the solution s(t) = —=sin Vkt satisfying the equa-

vk »
tion s + ks = 0 with s(0) = 0, s'(0) = 1. Hence, b ((t)) = Vk cot Vkt.
s

Thus, we have the conjugate Jacobi tensor A with A(0) =0, A'(0) = Id.
Moreover, B = A'A™! = Vk cot \/%tfd, 6 =tr(B) = nV'k cot \/Et,
[}

s'(t

and ¢ = B — gId = 0. Thus, b = Vk cot Vit = 9((t))
n S

Riccati equation

satisfying the

(2.11) L+ b2 +k=0.

!

Now, putting b = y_’ the equation (2.9) induces the Jacobi equation
Y

Ric+ tr(a2)
n—1

y' 4+ ( )y =0.

Since o extends to ¢t = 0, by the standard ODE existence theorem,
there exists a smooth solution ¢(t) of this Jacobi equation with ¢(0) =
0, ¢'(0) = 1. The following lemma is given by Lemma 5 in [7].
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LEMMA 2.1. Let g and s be smooth functions satifying g'" + kg < 0
and s" + ks = 0 with ¢g(0) = s(0), ¢’'(0) = s’(0) and g and s are positive
for interval (0, a). Suppose t, and t, are the first positive zeros of g and
$. Then

(i) ¢, <t,,
(ii) g < s on[0,t,], and equality at t, implies equality on [0, ],

(iii) ¢'/g < s'/s on (0, min{t,,%,}), and equality at to implies equal-

ity on (0, to].

3. Volume comparison theorem on space-times

Let M™ be the space-time given in Section 2 and let p € M. For
any v € E, v, is also the radial geodesic with 1,(0) = p and ~,(0) = v.
Choose a conjugate Jacobi tensor A along v, with A(0) =0, A'(0) = Id.
Putting a(t) = det A(t), since tr(B) = tr(A’A™1) = (det A)'/ det A, we
have a'(t) = tr(B)a(t). Setting j,(t) = a(t)"T,

(3.1) 7o(t) = b(t)ju(t)

where b = tr(B).
n—1

Moreover, let Qx be an n-dimensional (n > 2) space-time of constant
curvature k > 0. Then, for a conjugate Jacobi tensor A with A(0) =
0, A'(0) = Id, along any geodesic,

1

vk

Hence, det A(t) = (% sin \/Et)"_l. Thus,

(3.2) A(t) = —=sin VktId.

J(t) = (det A(t)) 7T = % sin Vit > 0

for0<t< = Therefore, we also have

Vk
(3.3) 7'(t) = bi(1)i (1)
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where bi(t) = % cot Vkt.

Let {v,e1,¢2,.....6en—1} be an orthonormal basis of T, M with ey, €2,
..... , €n—1 spacelike and extend them to the parallel frame fields P; along
v, with Pi(0) = €;, ¢ = 1,2,3....,n — 1. Then Ji(t) = (AP;)(t) are
linearly independent Jacobi fields along v, for 0 < t < cuty(p). Since

Ji(t) = a*|(,,0)(:1—q-) =Dy, expp(te,-) for the normal variation a of v,,

"1 det a0y = J1(#) A Ja(t) Ao T oa (8) |l

=|| APLANAPy A ... ANAP,_41 ||
= | det A|.
Thus, we have
(3.4) | det a*|(t,0)| = t""+1|det Al

Now, note that j,(0) = 0, j!(0) = 1. For, A(0) = ¢ implies det A(0) =

1
0. Moreover, since lim;—.o B(t) = lim;_.o —t-Id, we also have

1

. . 1 1 n-1
du(t) = lim —(det A)7=T = limy | det a1,0)| 7T

. . tr(B)
!
t) =
lim 7o) = fim -
Let K be a compact set in toE. Then K = exp, to K is also compact

in f7(tp). Set B;"(to) = U exp, tK, and V;,K(to) = Vol(B;"(to)).
0<t<to
Let du, dv be the volume elements of Fut(T,M), E respectively.
Then we have the change of variables on space-times as follows;

LEMMA 3.1. du = t""dtdv.

Proof. Define a differentiable map x4 : Rt x E — Fut(T,M) by
u(t,v) = tv. Choose bases {%,}’1,}’2, ..... JYooa), {v. Y1, Yo, Yo 1}
for T(t,,,)(R+ x E), Ti(T,M). Given v € E, let {}1,Y2,..... ,Y,_1} be

unit spacelike vectors which are orthogonal to v and we identify them

on T, F.
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Note that < v + sY;,v + sY; >= —1 + s% < 0 for sufficiently small s
so that v + sY; will be a future timelike vector for the s.

To calculate det(u,) where p, : T(; ,)(R x E) — T (T, M), we start
with ¢(s) = (¢ + s,v) to obtain p,% = (noe)(0) =di(tv + 8V)js=0 = v.
s
To calculate 4.Y;, we form the curve

v+ sY;
v+ sY5 |

v S

c(s) = (¢t T +\/1_32

)= (¢,

Y;)

where

lv+sY; Il = /= <v 35,017, >

=\/—<v,v>—25<v,Yj>—s2<Yj,Yj>=\/1—32.

Hence, p o ¢(s) ! to + —ee tY
, = v ;.
a V1 —s? Vi—s? '’

Thus, we obtain

5y, = (1 oc)(0) = tYj.

Moreover, we may have the matrix of p,

1 0 0.... 0
0 ¢t O0.... 0
0 0 0.... t

and det(p.) =¢""1. 0O

Now, we define a differential map F : M — Qi by F = exp, oioexp;l
where ¢ : T,M — Tp(;)Qr is a linear isometry to show the Bishop type
volume comparison theorem on Lorentzian manifold.

THEOREM 3.2. Let M™ be a globally hyperbolic space-time with its
Ricci curvature > (n — 1)k > 0 for some k > 0. Then, if Ve (ro) =

Vol(Bg((S)(ro)) for 0 < ro < min{Cut,(p) | v € K},

(3.5) V.K(ro) < Vg (ro)
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and equality implies that for any 0 < ¢t < 7o, B;"(t) is i1sometric to
F(K)(t)
F(p)

Proof. From Lemma 3.1,
K 0
v, (ro):/__|det a*|(t,o)|du:/;/ |deta*|(t‘0)|t"_ldtdv
BE K Jo

To To
:/ / |detA|dtdv:/ / Fo(t)™ dtdv.
K Jo " Jo

and Vp(p)(ro) = / / (j(t)*dtdv.

Note that j(0) = 0, 5/(0) = 1 and 7,(0) =0, j,(0) = 1. By Lemma
2 1 (i1), the mequahty holds. Now suppose V (r0) = Vp(p)(ro). Then
o Ju(t)dt = [0 j(t)dt.

Since j,(t) and j(t) are positive in (0, min{t,,?,}) where ¢, and ¢, are

1
given in Lemma 2.1, we have j, = j = ﬁ sin V'kt on [0, 7] for any fixed
v EE.
. t 2
Hence, b = by and chl + rlo 1) = k from the equations (2.9) and
n— n—

(2.11).
Since Ric > (n — 1)k,

Ric  tr(o?) Ric
+ >

>k
n—1 n—1 " n-17

?

which implies tr(c?) = 0, i.e., o = 0 since o is self-adjoint.
Moreover, B(t) = bld = biId.

From (2.2), we have R = kId. From (3.2), Ji(t) = -\—}—_sin VEtPi(t)

along v, where P;(t) are parallel fields of the spacehke orthonormal vec-
tors e; along v,. Therefore, F' = exp, 010 exp, ' : BPI‘ (t) — BF(M(t) is

an isometry on [0,rp]. O
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