• Title/Summary/Keyword: Time-varying fading channel

Search Result 81, Processing Time 0.021 seconds

Block-Mode Lattice Reduction for Low-Complexity MIMO Detection

  • Choi, Kwon-Hue;Kim, Han-Nah;Kim, Soo-Young;Kim, Young-Il
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.110-113
    • /
    • 2012
  • We propose a very-low-complexity lattice-reduction (LR) algorithm for multi-input multi-output detection in time-varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the lattice transformation matrices during the LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. As the Doppler frequency decreases, the complexity reduction efficiency becomes more significant.

Joint Symbol Detection and Channel Estimation Methods for an OFDM System in Fading Channels (페이딩 채널환경에서 OFDM 시스템에 대한 심볼 검출 및 채널 추정 기법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • In this paper, we present the joint symbol detection and channel estimation for an orthogonal frequency division multiplexing (OFDM) system in fading channels. The proposed methods are based on decision-directed channel estimation (DDCE) method and their symbol detection is achieved by using Viterbi algorithm. This Viterbi decision-directed channel estimation (VDDCE) method tracks time-varying channels and detects a maximum likelihood symbol sequence. Recursive Viterbi decision-directed channel estimation (RVDDCE) method based on VDDCE method is proposed to shorten the detecting depth. In this method, channel estimate and Viterbi processing are recursively performed every interval of training symbol. Also, average chann'el estimation (ACE) technique to reduce the effect of additive white Gaussian noise (AWGN) is applied VDDCE method and RVDDCE method. These proposed methods arc demonstrated by computer simulation.

  • PDF

Packet Acquisition for a CDMA/TDD Packet Radio System

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1086-1089
    • /
    • 2002
  • In this paper, an adaptive packet acquisition performance of a CDMA/TDD packet radio system is analyzed and simulated in a frequency-selective Rayleigh fading channel. The frequency-selective fading process is assumed to be WSSUS model which is typical for a satellite and a mobile radio communications. The performance is evaluated in terms of packet error probability. In this adaptive packet acquisition scheme, an auxiliary training sequence is placed within data packet to estimate time-varying channel state. From the simulation results, it is confirmed that the proposed acquisition scheme significantly improves packet error performance compared to the conventional fixed acquisition scheme, especially, for the case of low Doppler frequency. The analysis in this paper can be applied to the design of a CDMA/TDD packet radio system.

  • PDF

Analysis of Delay Distribution and Rate Control over Burst-Error Wireless Channels

  • Lee, Joon-Goo;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.355-362
    • /
    • 2009
  • In real-time communication services, delay constraints are among the most important QoS (Quality of Service) factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are used. For real-time communication services, it is very essential to predict data deliverability. This paper derives the delay distribution and the successful delivery probability within a given delay budget using a priori channel model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel is employed as an a Priori channel model, where a two-state Markov-modulated Bernoulli process $(MMBP_2)$ is used. for a posteriori information, the channel parameters, the queue-length and the initial channel state are assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

Effect of frequency dependent multipath fading on non-coherent underwater communication system (주파수 종속 다중경로 페이딩이 비코히어런트 수중통신시스템에 미치는 영향)

  • Kim, Jongjoo;Park, Jihyun;Bae, Minja;Park, Kyu-Chil;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2016
  • Underwater acoustic communication channel is often defined as a multipath fading channel since the multipath arrivals from various paths interfere with each other and cause frequency dependent constructive or destructive interference in received signals. Therefore signal-to-noise ratio (SNR) of received signal fluctuates as a function of frequency. In addition, sea surface fluctuation induces frequency dependent time variant signal fading due to coherent component variation of surface bounce path. The frequency shift keying (FSK) system is known to be less sensitive and more robust under these interference and fading, and M-ary frequency shift keying (MFSK) system is adopted to increase a data rate. In this study, a bit error rate (BER) of 4 channels 4FSK system are examined in shallow sea multipath channel. Experimental results show that RS code reduces efficiently the BER of 4FSK system since frequency dependent time-varying fading is characterized to give burst errors. The BER of a different data rate or different source-to-receiver range depends on not only the channel coherent bandwidth but also frequency dependent multipath fading.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.

Concatenated Zigzag(CZZ) Code for Improving Error Performance of Uplink Data in Marine Environment (해상 환경에서의 업링크 데이터의 오류성능 개선을 위한 CZZ 부호화)

  • Yun, Jung-Kug
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.648-654
    • /
    • 2011
  • We can model marine uplink channel environment as time-correlated rician fading channel that has direct path and time varying reflected path. In this channel, error performance of uncoded system can be seriously degraded by multipath inteference. In this paper, we propose Concatenated Zigzag(CZZ) coded binary FSK signaling with noncoherent detection to improve error performance of uplink data in marine environment. CZZ code is a kind of channel coding scheme that is fast decodable as well as fast encodable. We have confirmed error performance of uplink data in marine environment can be improved dramatically through applying CZZ code.

Performance Investigation of Space-Time Block Coded Multicarrier DS-CDMA in Time-Varying Channels

  • Narzullaev, Anvar;Ryu, Kwan-Woong;Park, Yong-Wan
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.684-687
    • /
    • 2006
  • In this letter, we evaluate the system performance of a space-time block coded (STBC) multicarrier (MC) DS-CDMA system over a time selective fading channel, with imperfect channel knowledge. The average bit error rate impairment due to imperfect channel information is investigated by taking into account the effect of the STBC position. We consider two schemes: STBC after spreading and STBC before spreading in the MC DS-CDMA system. In the scheme with STBC after spreading, STBC is performed at the chip level; in the scheme with STBC before spreading, STBC is performed at the symbol level. We found that these two schemes have various channel estimation errors, and that the system with STBC before spreading is more sensitive to channel estimation than the system with STBC after spreading. Furthermore, derived results prove that a high spreading factor (SF) in the MC DS-CDMA system with STBC before spreading leads to high channel estimation error, whereas for a system with STBC after spreading this statement is not true.

  • PDF