• Title/Summary/Keyword: Time-varying fading channel

Search Result 81, Processing Time 0.02 seconds

Optimum Power Allocation for Distributed Antenna Systems with Large Scale Fading-only Feedback (Large Scale Fading값만을 피드백하는 분산 안테나 시스템을 위한 최적 전력 할당)

  • Lim, Dong-Ho;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.635-642
    • /
    • 2008
  • We propose the Optimum Power Allocation (OPA) scheme for Distributed Antenna Systems(DAS) in the time-varying Rayleigh fading channel. Recently, the OPA schemes which uses the Channel State Information (CSI) including a small scale (fast) fading have been proposed. However, the channel is changing vary fast over time due to small scale fading, therefore Bit Error Rate (BER) increases. Because of this reason, we derive the OPA for minimizing BER in DAS, which only uses a large scale fading to CSI and excepts a small scale fading. The simulation results show that the proposed OPA achieves better BER performance than conventional OPA considering a small scale fading in time-varying Rayleigh fading channel, and also has similar performance in Rayleigh flat-fading environment. The BER performance of proposed OPA which derived in Rayleigh fading channel is similar to minimum BER of Ricean fading channel which has small Line-of-Sight (LOS).

Sum rate and Energy Efficiency of Massive MIMO Downlink with Channel Aging in Time Varying Ricean Fading Channel

  • Yang, Lihua;Yang, Longxiang;Zhu, Hongbo;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1098-1112
    • /
    • 2018
  • Achievable sum rate and energy efficiency (EE) are investigated for the massive multiple-input multiple-output (Massive MIMO) downlink with channel aging in the time varying Ricean fading channel. Specifically, the expression of the achievable sum rate of the system for the maximum ratio transmission (MRT) precoder with aged channel state information (CSI) in the time varying Ricean fading channel is first presented. Based on the expression, the effect of both channel aging and the Ricean factor on the power scaling law are studied. It is found that the transmit power of base station (BS) is scaled down by $1/{\sqrt{M}}$(where M is the number of the BS antennas) when the Ricean factor K is equal to zero (i.e., time varying Rayleigh fading channel), indicating that aged CSI does not affect the power scaling law. However, the transmit power of the BS is scaled down by 1/M for the time varying Ricean fading channel (where $K{\neq}0$) indicating that the Ricean factor affects the power scaling law and sum rate, and channel aging only leads to a reduction of the sum rate. Second, the EE of the system is analyzed based on the general power consumption model. Both the theoretical analysis and the simulations show that the channel aging could degrade the sum rate and the EE of the system, and it does not affect the power scaling law.

A Frequency Domain Equalization Algorithm for Fast Time-Varying Fading Channels

  • Tran, Le-Nam;Hong, Een-Kee;Liu, Huaping
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • Conventional frequency domain equalization (FDE) schemes were originally devised for quasi-static channels. Thus, such equalization schemes could suffer from significant performance degradation in fast-fading channels. This paper proposes a frequency domain equalization algorithm to mitigate the effect of fast time-varying fading. First, a mathematical expression is derived to quantify the total interference resulting from the time variation of the channel. Then, the proposed approach attempts to eliminate the effect of time-variations of the channel. This cancellation allows efficient use of the classical FDE structures in fast time-varying fading environments, although they are built upon the quasi-static channel model. Simulation results of bit-error-rate performance are provided to demonstrate the effectiveness of the proposed algorithm.

A Time-Varying Modified MMSE Detector for Multirate CDMA Signals in Fast Rayleigh Fading Channels

  • Jeong, Kil-Soo;Yokoyama, Mitsuo;Uehara, Hideyuki
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.143-152
    • /
    • 2007
  • In this paper, we propose a time-varying modified minimum mean-squared error (MMSE) detector for the detection of higher data rate signals in a multirate asynchronous code-division multiple-access (CDMA) system which is signaled in a fast Rayleigh fading channel. The interference viewed by a higher data rate symbol will be periodic due to the presence of a lower data rate symbol which spans multiple higher data rate symbols. The detection is carried out on the basis of a modified MMSE criterion which incorporates differential detection and the ratio of channel coefficients in two consecutive observation intervals inherently compensating the fast variation of the channel due to fading. The numerical results obtained by the MMSE detector with time-varying detection show around 3 dB (M=2) and 6 dB (M=4) performance improvement at a BER of $10^{-3}$ in the AWGN channel, while introducing more computational complexity than the MMSE detector without time-varying detection. At a higher $E_b/N_0$, the proposed scheme can achieve a BER of approximately $10^{-3}$ in the presence of fast channel variation which is an improvement over other schemes.

  • PDF

An Equalization Technique for OFDM and MC-CDMA in a Slowly Time-Varying Multipath Fading Channel (시변 다중 경로 페이딩 채널에서 OFDM, MC-CDMA의 등화 기법)

  • 최종호;조용수
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.3-7
    • /
    • 1996
  • In this paper, the performances of OFDM and MC-CDMA systems in a slowly-varying multipath fading environment is investigated. Time variation of the multipath channel leads to both a change of an optimal coefficient in one-tap equalizer and a loss of subchannel orthogornality, resulting in significant performance loss. A new simple one-tap equalizer which can reduce the effect of slowly time-varying multipath channel is proposed by taking into account time-variation of multipath profile and modifying the previous equalization techniques. It is demonstrated by computer simulation that the performances of OFDM and MC-CDMA systems can be improved by using the proposed one-tap equalizers when the multipath channel is slowly varying.

  • PDF

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.

Performance Analysis of Pilot Patterns for Channel Estimation in OFDM Systems (OFDM 시스템에서 채널 추정을 위한 파일럿 패턴의 성능 분석)

  • Choe, Kwang-Don;Hyun, Deok-Soo;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.664-670
    • /
    • 2005
  • OFDM is a very attractive technique for achieving high-bit-rate data transmission and high spectrum efficiency in fading environment. However, the reliable detection of an OFDM signal in time-varying multipath fading channels is a challenging problem. Accordingly, various channel estimation methods have been proposed for performance improvement. But, conventional pilot patterns for channel estimation in OFDM systems have not robust characteristics relating to various mobile speed. To solve this drawback in conventional patterns, we propose the pilot patterns modified from conventional patterns to have a good error performance in time-varying fading channel. Simulation results show that the performance of the proposed pilot patterns is better than conventional patterns in fast time-varying channel.

Decision Feedback Detector for Space-Time Block Codes over Time-Varying Channels

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.506-513
    • /
    • 2003
  • Most existing space-time coding (STC) schemes have been developed for flat fading channels. To obtain antenna diversity gain, they rely on channel state information (CSI) required at the receiver through channel estimation techniques. This paper proposes a new decision feedback decoding scheme for Alamouti-based space-time block coding (STBC) transmission over time-selective fading channels. In wireless channels, time-selective fading effects arise mainly due to Doppler shift and carrier frequency offset, Modelling the time-selective fading channels as the first-order Gauss-Markov processes, we use recursive algorithms such as Kalman filtering, LMS and RLS algorithms for channel tracking. The proposed scheme consists of the symbol decoding stage and channel tracking algorithms. Computer simulations confirm that the proposed scheme shows the better performance and robustness to time-selectivity.

Robust Video Transmission System Employing Byte-Aligned Variable-Length Turbo Codes and Its Code-Rate Adaptation over Mobile Communication Channels (이동통신 환경에서 바이트 정렬 가변 길이 터보 코드의 적응 부호화율 적용을 통한 동영상 전송 시스템)

  • 이창우;김종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.921-930
    • /
    • 2004
  • In this paper, a robust video transmission system is proposed. To effectively prevent the corruption of video stream and its propagation in spatial and temporal domains, a version of turbo code, so-called as byte-aligned variable-length turbo code, is applied. Protection performance of the proposed turbo code is first evaluated by applying it to GOB-based variable-size ITU-T H.263+ video packets, where the protection level is statically controlled based on the joint source-channel criteria. This protection is then extended to support the adaptation of code ratio to best match the time-varying channel condition. The time-varying Rayleigh fading channel is modelled considering the correlation of the fading channel. The resulting performance comparison with the static turbo code as well as the conventional RCPC code clearly demonstrates the possibility of the proposed adaptation approach for the time-varying correlated Rayleigh-fading channel.

Two-Dimensional POMDP-Based Opportunistic Spectrum Access in Time-Varying Environment with Fading Channels

  • Wang, Yumeng;Xu, Yuhua;Shen, Liang;Xu, Chenglong;Cheng, Yunpeng
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.217-226
    • /
    • 2014
  • In this research, we study the problem of opportunistic spectrum access (OSA) in a time-varying environment with fading channels, where the channel state is characterized by both channel quality and the occupancy of primary users (PUs). First, a finite-state Markov channel model is introduced to represent a fading channel. Second, by probing channel quality and exploring the activities of PUs jointly, a two-dimensional partially observable Markov decision process framework is proposed for OSA. In addition, a greedy strategy is designed, where a secondary user selects a channel that has the best-expected data transmission rate to maximize the instantaneous reward in the current slot. Compared with the optimal strategy that considers future reward, the greedy strategy brings low complexity and relatively ideal performance. Meanwhile, the spectrum sensing error that causes the collision between a PU and a secondary user (SU) is also discussed. Furthermore, we analyze the multiuser situation in which the proposed single-user strategy is adopted by every SU compared with the previous one. By observing the simulation results, the proposed strategy attains a larger throughput than the previous works under various parameter configurations.