Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.
Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.9
/
pp.24-33
/
2017
Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.
We improved the MODerate resolution Imaging Spectroradiometer (MODIS) land cover map over the Asia-Oceania region through the reclassification of the misclassified pixels. The misclassified pixels are defined where the number of land cover types are greater than 3 from the 12 years of MODIS land cover map. The ratio of misclassified pixels in this region amounts to 17.53%. The MODIS Normalized Difference Vegetation Index (NDVI) time series over the correctly classified pixels showed that continuous variation with time without noises. However, there are so many unreasonable fluctuations in the NDVI time series for the misclassified pixels. To improve the quality of input data for the reclassification, we corrected the MODIS NDVI using Correction based on Spatial and Temporal Continuity (CSaTC) developed by Cho and Suh (2013). Iterative Self-Organizing Data Analysis (ISODATA) was used for the clustering of NDVI data over the misclassified pixels and land cover types was determined based on the seasonal variation pattern of NDVI. The final land cover map was generated through the merging of correctly classified MODIS land cover map and reclassified land cover map. The validation results using the 138 ground truth data showed that the overall accuracy of classification is improved from 68% of original MODIS land cover map to 74% of reclassified land cover map.
Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.
The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.
Lee, Jihye;Kang, Sinkyu;Jang, Keunchang;Hong, Suk Young
Korean Journal of Remote Sensing
/
v.31
no.2
/
pp.149-160
/
2015
A comparative study was conducted for alternative consecutive procedures of detection of cloud-contaminated pixels and gap-filling and smoothing of time-series data to produce high-quality gapless satellite vegetation index (i.e. Normalized Difference Vegetation Index, NDVI). Performances of five alternative methods for detecting cloud contaminations were tested with ground-observed cloudiness data. The data gap was filled with a simple linear interpolation and then, it was applied two alternative smoothing methods (i.e. Savitzky-Golay and Wavelet transform). Moderate resolution imaging spectroradiometer (MODIS) data were used in this study. Among the alternative cloud detection methods, a criterion of MODIS Band 3 reflectance over 10% showed best accuracy with an agreement rate of 85%, which was followed by criteria of MODIS Quality assessment (82%) and Band 3 reflectance over 20% (81%), respectively. In smoothing process, the Savitzky-Golay filter was better performed to retain original NDVI patterns than the wavelet transform. This study demonstrated an operational framework of gapdetection, filling, and smoothing to produce high-quality satellite vegetation index.
Journal of The Korean Society of Agricultural Engineers
/
v.63
no.6
/
pp.101-115
/
2021
The purpose of this study is to evaluate the compatibility of the vegetation index between the two satellites and the applicability of agricultural monitoring by comparing and verifying NDVI (Normalized Difference Vegetation Index) based on Sentinel-2 and Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Terra MODIS NDVI utilized 16-day MOD13Q1 data with 250 m spatial resolution, and Sentinel-2 NDVI utilized 10-day Level-2A BOA (Bottom Of Atmosphere) data with 10 m spatial resolution. To compare both NDVI, Sentinel-2 NDVIs were reproduced at 16-day intervals using the MVC (Maximum Value Composite) technique. As a result of time series NDVIs based on two satellites for 2019 and compare by land cover, the average R2 (Coefficient of determination) and RMSE (Root Mean Square Error) of the entire land cover were 0.86 and 0.11, which indicates that Sentinel-2 NDVI and MODIS NDVI had a high correlation. MODIS NDVI is overestimated than Sentinel-2 NDVI for all land cover due to coarse spatial resolution. The high-resolution Sentinel-2 NDVI was found to reflect the characteristics of each land cover better than the MODIS NDVI because it has a higher discrimination ability for subdivided land cover and land cover with a small area range.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.3
/
pp.1-18
/
2018
The purpose of this study is to analyze sensitivity of forest ecosystem to climate change using spatial analysis methods focused on 6 national parks. To analyze, we constructed MODIS NDVI and temperature of Korea Meteorologic Administration based on 1km spatial resolution and 16 days. And we conducted time-series and correlation analysis using MODIS NDVI and temperature. A most sensitive region to climate change is Jirisa National Park(r=0.434) and Seoraksan National Park(r=0.415), there is the highest mean correlation coefficient. The sensitivity of forest ecosystem varied according to habitat characteristics and forest types in national park. In Abies koreana of Hallsan Nation Park, temperature has raised, but NDVI has decreased. these results will be based data of climate change adaption policy for protecting forest ecosystem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.