본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.
최근 몇 년간 발생한 원자재 가격의 급격한 변동은 국내 경제활동에 예상치 못한 부정적 영향을 초래하였다. 우리나라는 대부분 원자재를 수입에 의존하고 있어 예상치 못한 가격변동은 거시경제 변수를 통해 생산활동 전반에 영향을 미친다. 따라서 장기적 관점에서는 원자재 수요관리 혹은 공급안정성 확보 등 대안을 마련하여 정책적으로 지원하고 있으며 단기적 관점에서는 원자재 비축과 일반원자재 조기경보체제의 도입을 추진하고 있다. 단기적 관점의 정책 대안은 가격변동의 단기예측 가능성을 전제로 하고 있으며 최근까지 다양한 연구가 진행되어 왔다. 본 연구는 이와 같은 모수적 접근과 시계열 분석의 문제점을 완화하고 경제적 해석이 상대적으로 용이한 대안을 찾고자 하였다. 알루미늄, 전기동, 니켈을 대상으로 신호접근법을 활용하여 변수간 상관관계의 문제나 유의한 변수의 누락 문제를 완화할 수 있는 비모수적 접근을 시도하였다. 설정한 모형을 통해 실제 비철금속의 가격변동이 심화되었던 2004년 초와 2006년의 기간에 대해 모형이 선제적으로 신호를 발생시키고 있음을 확인하였다. 이는 사후적으로 살펴본 모형의 결과와도 큰 차이가 없는 것으로 나타나 본 연구의 모형이 기존연구의 단점을 완화하고 단기 가격변동을 예측할 수 있다는 실증적 결론을 얻을 수 있었다.
과거부터 축적된 시계열 데이터 기반의 정량적 예측 모형은 수치적인 정확성을 추구함으로써 다양한 분야의 투자 효과 예측에 활용되고 있다. 특히, R&D 사업의 경우 그 투자효과에 대해 역설할 필요가 있고, 이에 따라 건설 산업을 포함한 각 산업 정부 R&D 투자효과 예측을 위해 이러한 모형이 활용되고 있다. 그러나 5개의 세부 사업으로 분리 발주되는 건설 분야 정부 R&D 사업의 경우, 세부 사업 관련 축적된 데이터가 부족하고, 각 세부 사업별로 투자의 파급과정이 상이하다. 이에 따라 데이터 기반의 계량적 예측모형 개발에 제약이 있고, 개발된다 하더라도 투자 파급과정에 대한 설명력이 부족하여 투자 당위성을 설명해야 하는 각 세부 사업 담당자의 요구를 만족시키기에 한계가 있다. 이러한 문제를 해결하기 위해 적용되는 시스템다이내믹스 (System Dynamics) 시뮬레이션 방법론은 변수 간 인과관계를 기반으로 시스템 내 순환적 동태적 상호작용을 설명함으로써 건설 R&D 세부 사업들의 다양한 투자 파급과정을 이해하는 데 장점이 있다. 따라서 본 연구는, 각 사업별 특성에 대한 분석 및 관련된 정성적 자료를 기반으로 건설 R&D 투자의 파급과정을 설명하는 시스템다이내믹스 예측 모형을 개발하였다. 또한, 시스템다이내믹스 모형의 수치적 예측 정확성을 보완하기 위해 기 개발된 데이터 기반의 계량적 예측 모형과의 상호 연동체계를 제안하고, 이를 활용하였다. 본 모델링 방법은 정성적 자료와 정량적 데이터를 복합적으로 활용함으로써, R&D 투자의 파급과정 등 시스템 구조에 대한 이해를 가능하게 할 뿐 아니라 예측의 수치적 정확성을 보완할 수 있다. 제안한 모델링 방법을 가용데이터가 부족한 정부의 건설 R&D 세부 사업들의 경제적 투자효과 분석에 적용함으로써, 상이한 각 사업별 투자 파급과정에 대한 이해를 바탕으로 투자효과 극대화를 위한 전략 도출 및 수치적 예측력이 보완된 투자효과 분석에의 활용 가능성을 확인하였다.
최근 시스템 반도체 발전으로 인하여 자동차 산업의 전장(電裝)에 대한 기술혁신이 빠르게 진행되고 있다. 특히, 자동차의 전장화는 자동차 부품업체들의 기술개발 경쟁을 가속화시키고 있으며, 개발 주기 또한 빠르게 변화하고 있다. 이러한 변화로 인하여 연구개발에 대한 전략과 기획의 중요성은 더욱 강화되고 있다. 자동차 산업의 패러다임 변화로 인하여, 연구개발 전략 중의 하나인 제품-기술로드맵(P/TRM)은 기획 단계에서 기술예측, 기업의 기술수준평가, 기술획득방법(Make/Collaborate/Buy) 등의 분석을 통하여 개발이 이루어져야 한다. 제품-기술로드맵은 제품과 기술의 고객 니즈를 파악하고 기술의 선정, 개발방향을 설정하는 툴(Tool)로써, 미래의 발전방향 추세를 예측하고 매크로(Macro) 트랜드의 전략적 방향성과 목표를 설정하는데 사용된다. 하지만, 대부분의 기업에서는 해당 기술의 논문이나 특허 분석, 전문가 델파이에 주로 의존하는 정성적인 방법을 통하여 제품-기술로드맵을 개발하고 있다. 본 연구는 가트너의 하이프 사이클과 누적이동평균 기반 데이터 전처리, 딥러닝(LSTM) 시계열 분석 기법을 융합하여 자동차 산업 중심으로 제품-기술로드맵을 보완하고 강화시킬 수 있는 시뮬레이션을 통하여 실증 연구를 진행하였다. 본 논문에서 제시한 실증 연구는 자동차 산업 뿐만 아니라, 범용적으로 타제조업 분야에서도 사용 가능할 수 있다. 또한, 기업적인 측면에서는 그동안 정성적인 방법에 의존하던 로드맵 작성 방법에서 탈피하여 좀 더 정확한 제품-기술로드맵을 통하여 적기에 시장에 제품을 제공함으로써 선도업체로 나아가기 위한 밑거름이 될 것이라고 사료된다.
본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.
본 연구에서는 국내 도시가스 수요 데이터를 분석하여 시간대별 도시가스 수요의 특성을 파악하고 정확한 시간대별 도시가스 수요 예측을 위해 다중회귀모형(multiple regression model)을 개발하였다. 시간대별 도시가스 수요를 정확하게 예측하는 것은 공급자의 비용 절감뿐만 아니라 안정적인 배관망 관리 측면에서도 매우 중요하다. 수요 예측 오류로 인해 가스 공급이 부족한 상황이 발생하면 부족한 공급량을 빠른 시간내에 보충하기 위해 가스 배관망의 압력을 급격히 증가시켜야 하는 응급 상황이 전개될 수 있다. 반면, 시간대별 가스 생산량이 실제 수요보다 많은 경우에는 과다한 저장 시설 운용 및 불필요한 생산 비용이 발생하는 문제가 있다. 과거 시간대별 도시가스 수요 데이터를 분석한 결과 시간대별 도시 가스 수요는 직전 시간대(즉, 24시간 전) 수요와 매우 높은 상관관계를 보이며 24시간 수요 패턴은 1주일전 동일 요일(즉, 168시간전)의 24시간 수요 패턴과 매우 높은 상관관계가 있음을 확인하였다. 또한, 외기 온도가 도시가스 수요에 영향을 주는 특수한 조건을 파악하였다. 즉, 시간대별 도시가스 수요와 시간대별 외기 온도는 평균적으로 0.853의 높은 상관계수 절대값을 보여주며, 상관관계 분석시 같은 요일에 속한 데이터만 분석하면 상관계수의 절대값은 최저 0.861 및 최고 0.965까지 증가한다. 이상의 분석 결과를 바탕으로 본 연구에서는 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형 및 외기 온도를 추가한 두 번째 다중회귀모형을 제안하며, 제안한 예측모형의 성능을 확인하기 위해 2009년부터 2013년까지 5년간의 시간대별 수요 예측 결과를 평가하였다. 본 연구에서 제안한 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형의 경우 과거 5년간의 수요 예측 오차율의 절대값 평균(mean absolute percentage error)은 4.5% 수준이며, 외기 온도를 추가한 모형의 경우 오차율의 절대값 평균은 5.13%임을 확인하였다.
방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.
Kim, Min-Young;Kim, Min-Kyeong;Lee, Sang-Bong;Jeon, Jong-Gil
Environmental Engineering Research
/
제15권2호
/
pp.123-126
/
2010
Modeling non-point pollution across multiple scales has become an important environmental issue. As a more representative and practical approach in quantifying and qualifying surface water, a modular neural network (MNN) was implemented in this study. Two different site-scales ($1.5\;{\times}\;10^5$ and $1.62\;{\times}\;10^6\;m^2$) with the same plants, soils, and paddy field management practices, were selected. Hydrologic data (rainfall, irrigation and surface discharge) and water quality data (time-series nutrient loadings) were continuously monitored and then used for the verification of MNN performance. Correlation coefficients (R) for the results predicted from the networks versus measured values were within the range of 0.41 to 0.95. The small block could be extrapolated to the large field for the rainfall-surface drainage process. Nutrient prediction produced less favorable results due to the complex phenomena of nutrients in the drainage water. However, the feasibility of using MNN to generate improved prediction accuracy was demonstrated if more hydrologic and environmental data are provided. The study findings confirmed the estimation accuracy of the upscaling from a small-segment block to large-scale paddy field, thereby contributing to the establishment of water quality management for sustainable agriculture.
This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.
경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인, 금융기관 등의 외환거래 참가가들에게 외환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위하여 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향후 예측에 적용한다. 실제의 원/달러 환율데이터를 적용하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.