• 제목/요약/키워드: Time-series Forecasting

검색결과 597건 처리시간 0.043초

농업용 저수지에서 저수량 예측 모형과 연계한 저수지 운영 개선 방안의 모색 (A Reservoir Operation Plan Coupled with Storage Forecasting Models in Existing Agricultural Reservoir)

  • 안태진;이훈자;이재영;이재응;윤용남
    • 한국수자원학회논문집
    • /
    • 제37권1호
    • /
    • pp.77-86
    • /
    • 2004
  • 본 연구에서는 농업용 저수지에서 저수량 예측모형과 함께 저수지의 목표저수량 및 한계저수량을 유지하기 위한 저수지 운영방안을 제시하였다. 대상저수지인 금강저수지에서 1990년부터 200l년까지의 저수량 자료를 이용하여 갈수빈도해석을 적용하고, 2년빈도 한발저수량을 목표저수량(target storage)으로, 10년빈도 한발저수량을 한계저수량(critical storage)으로 설정하였다. 농업용 저수지의 운영의 효율화를 위해서는 우선 합리적인 방법을 통하여 장래 저수량을 예측하여야 한다. 예측된 저수량은 저수지 운영에 관한 계획을 수립하는데 기초자료로 활용될 수 있다. 본 연구에는 저수량 예측모형으로 ARIMA 모형과 자기회귀오차모형을 적용하였다. ARIMA 모형은 과거 저수량 자료만을 근거로 하여 저수량을 예측함으로서 예측정도가 상대적으로 낮은 것으로 나타난 반면, 자기회귀오차모형은 저수량과 관련 있는 설명변수들을 이용함으로써 예측의 효과를 높일 수 있었다. 농업용 저수지의 저수량은 이전 저수량, 강수량, 평균온도, 최고온도, 관개면적, 풍속, 습도의 영향을 받으므로 자기회귀오차모형을 적용하여 저수량과 저수량에 영향을 미치는 요인과의 관계를 분석하였다. 자기회귀오차모형에 의한 저수량 예측 관계식은 저수지의 연속방정식과 유사한 관계식으로 유도되어 실제 적용성이 높을 것으로 판단되며, 금광저수지에서 예측된 2002년도 저수량과 관측된 저수량을 비교한 결과, 양호한 예측결과를 보여 주었다.

신호접근법을 이용한 비철금속 상품가격변동 예측모형 연구 (Predicting Raw Material Price Fluctuation Using Signal Approach: Application to Non-ferrous Metals)

  • 김지환;이상호
    • 자원환경지질
    • /
    • 제42권2호
    • /
    • pp.143-152
    • /
    • 2009
  • 최근 몇 년간 발생한 원자재 가격의 급격한 변동은 국내 경제활동에 예상치 못한 부정적 영향을 초래하였다. 우리나라는 대부분 원자재를 수입에 의존하고 있어 예상치 못한 가격변동은 거시경제 변수를 통해 생산활동 전반에 영향을 미친다. 따라서 장기적 관점에서는 원자재 수요관리 혹은 공급안정성 확보 등 대안을 마련하여 정책적으로 지원하고 있으며 단기적 관점에서는 원자재 비축과 일반원자재 조기경보체제의 도입을 추진하고 있다. 단기적 관점의 정책 대안은 가격변동의 단기예측 가능성을 전제로 하고 있으며 최근까지 다양한 연구가 진행되어 왔다. 본 연구는 이와 같은 모수적 접근과 시계열 분석의 문제점을 완화하고 경제적 해석이 상대적으로 용이한 대안을 찾고자 하였다. 알루미늄, 전기동, 니켈을 대상으로 신호접근법을 활용하여 변수간 상관관계의 문제나 유의한 변수의 누락 문제를 완화할 수 있는 비모수적 접근을 시도하였다. 설정한 모형을 통해 실제 비철금속의 가격변동이 심화되었던 2004년 초와 2006년의 기간에 대해 모형이 선제적으로 신호를 발생시키고 있음을 확인하였다. 이는 사후적으로 살펴본 모형의 결과와도 큰 차이가 없는 것으로 나타나 본 연구의 모형이 기존연구의 단점을 완화하고 단기 가격변동을 예측할 수 있다는 실증적 결론을 얻을 수 있었다.

건설 분야 정부 R&D 투자의 사업별 경제적 파급효과 분석 - 정성적 자료 기반의 시스템다이내믹스 예측모형 개발 - (Forecasting Economic Impacts of Construction R&D Investment: A Quantitative System Dynamics Forecast Model Using Qualitative Data)

  • 황성주;박문서;이현수;장유진;문명기;문예지
    • 한국건설관리학회논문집
    • /
    • 제14권2호
    • /
    • pp.131-140
    • /
    • 2013
  • 과거부터 축적된 시계열 데이터 기반의 정량적 예측 모형은 수치적인 정확성을 추구함으로써 다양한 분야의 투자 효과 예측에 활용되고 있다. 특히, R&D 사업의 경우 그 투자효과에 대해 역설할 필요가 있고, 이에 따라 건설 산업을 포함한 각 산업 정부 R&D 투자효과 예측을 위해 이러한 모형이 활용되고 있다. 그러나 5개의 세부 사업으로 분리 발주되는 건설 분야 정부 R&D 사업의 경우, 세부 사업 관련 축적된 데이터가 부족하고, 각 세부 사업별로 투자의 파급과정이 상이하다. 이에 따라 데이터 기반의 계량적 예측모형 개발에 제약이 있고, 개발된다 하더라도 투자 파급과정에 대한 설명력이 부족하여 투자 당위성을 설명해야 하는 각 세부 사업 담당자의 요구를 만족시키기에 한계가 있다. 이러한 문제를 해결하기 위해 적용되는 시스템다이내믹스 (System Dynamics) 시뮬레이션 방법론은 변수 간 인과관계를 기반으로 시스템 내 순환적 동태적 상호작용을 설명함으로써 건설 R&D 세부 사업들의 다양한 투자 파급과정을 이해하는 데 장점이 있다. 따라서 본 연구는, 각 사업별 특성에 대한 분석 및 관련된 정성적 자료를 기반으로 건설 R&D 투자의 파급과정을 설명하는 시스템다이내믹스 예측 모형을 개발하였다. 또한, 시스템다이내믹스 모형의 수치적 예측 정확성을 보완하기 위해 기 개발된 데이터 기반의 계량적 예측 모형과의 상호 연동체계를 제안하고, 이를 활용하였다. 본 모델링 방법은 정성적 자료와 정량적 데이터를 복합적으로 활용함으로써, R&D 투자의 파급과정 등 시스템 구조에 대한 이해를 가능하게 할 뿐 아니라 예측의 수치적 정확성을 보완할 수 있다. 제안한 모델링 방법을 가용데이터가 부족한 정부의 건설 R&D 세부 사업들의 경제적 투자효과 분석에 적용함으로써, 상이한 각 사업별 투자 파급과정에 대한 이해를 바탕으로 투자효과 극대화를 위한 전략 도출 및 수치적 예측력이 보완된 투자효과 분석에의 활용 가능성을 확인하였다.

제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구 (An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap)

  • 박기곤;김영준
    • 기술혁신연구
    • /
    • 제29권4호
    • /
    • pp.1-30
    • /
    • 2021
  • 최근 시스템 반도체 발전으로 인하여 자동차 산업의 전장(電裝)에 대한 기술혁신이 빠르게 진행되고 있다. 특히, 자동차의 전장화는 자동차 부품업체들의 기술개발 경쟁을 가속화시키고 있으며, 개발 주기 또한 빠르게 변화하고 있다. 이러한 변화로 인하여 연구개발에 대한 전략과 기획의 중요성은 더욱 강화되고 있다. 자동차 산업의 패러다임 변화로 인하여, 연구개발 전략 중의 하나인 제품-기술로드맵(P/TRM)은 기획 단계에서 기술예측, 기업의 기술수준평가, 기술획득방법(Make/Collaborate/Buy) 등의 분석을 통하여 개발이 이루어져야 한다. 제품-기술로드맵은 제품과 기술의 고객 니즈를 파악하고 기술의 선정, 개발방향을 설정하는 툴(Tool)로써, 미래의 발전방향 추세를 예측하고 매크로(Macro) 트랜드의 전략적 방향성과 목표를 설정하는데 사용된다. 하지만, 대부분의 기업에서는 해당 기술의 논문이나 특허 분석, 전문가 델파이에 주로 의존하는 정성적인 방법을 통하여 제품-기술로드맵을 개발하고 있다. 본 연구는 가트너의 하이프 사이클과 누적이동평균 기반 데이터 전처리, 딥러닝(LSTM) 시계열 분석 기법을 융합하여 자동차 산업 중심으로 제품-기술로드맵을 보완하고 강화시킬 수 있는 시뮬레이션을 통하여 실증 연구를 진행하였다. 본 논문에서 제시한 실증 연구는 자동차 산업 뿐만 아니라, 범용적으로 타제조업 분야에서도 사용 가능할 수 있다. 또한, 기업적인 측면에서는 그동안 정성적인 방법에 의존하던 로드맵 작성 방법에서 탈피하여 좀 더 정확한 제품-기술로드맵을 통하여 적기에 시장에 제품을 제공함으로써 선도업체로 나아가기 위한 밑거름이 될 것이라고 사료된다.

기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증 (Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm)

  • 오광철;김석준;박선용;이충건;조라훈;전영광;김대현
    • 생물환경조절학회지
    • /
    • 제31권3호
    • /
    • pp.152-162
    • /
    • 2022
  • 본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.

국내 도시가스의 시간대별 수요 예측 (Forecasting Hourly Demand of City Gas in Korea)

  • 한정희;이근철
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.87-95
    • /
    • 2016
  • 본 연구에서는 국내 도시가스 수요 데이터를 분석하여 시간대별 도시가스 수요의 특성을 파악하고 정확한 시간대별 도시가스 수요 예측을 위해 다중회귀모형(multiple regression model)을 개발하였다. 시간대별 도시가스 수요를 정확하게 예측하는 것은 공급자의 비용 절감뿐만 아니라 안정적인 배관망 관리 측면에서도 매우 중요하다. 수요 예측 오류로 인해 가스 공급이 부족한 상황이 발생하면 부족한 공급량을 빠른 시간내에 보충하기 위해 가스 배관망의 압력을 급격히 증가시켜야 하는 응급 상황이 전개될 수 있다. 반면, 시간대별 가스 생산량이 실제 수요보다 많은 경우에는 과다한 저장 시설 운용 및 불필요한 생산 비용이 발생하는 문제가 있다. 과거 시간대별 도시가스 수요 데이터를 분석한 결과 시간대별 도시 가스 수요는 직전 시간대(즉, 24시간 전) 수요와 매우 높은 상관관계를 보이며 24시간 수요 패턴은 1주일전 동일 요일(즉, 168시간전)의 24시간 수요 패턴과 매우 높은 상관관계가 있음을 확인하였다. 또한, 외기 온도가 도시가스 수요에 영향을 주는 특수한 조건을 파악하였다. 즉, 시간대별 도시가스 수요와 시간대별 외기 온도는 평균적으로 0.853의 높은 상관계수 절대값을 보여주며, 상관관계 분석시 같은 요일에 속한 데이터만 분석하면 상관계수의 절대값은 최저 0.861 및 최고 0.965까지 증가한다. 이상의 분석 결과를 바탕으로 본 연구에서는 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형 및 외기 온도를 추가한 두 번째 다중회귀모형을 제안하며, 제안한 예측모형의 성능을 확인하기 위해 2009년부터 2013년까지 5년간의 시간대별 수요 예측 결과를 평가하였다. 본 연구에서 제안한 24시간 전 수요와 168시간 전 수요를 독립변수로 고려한 다중회귀모형의 경우 과거 5년간의 수요 예측 오차율의 절대값 평균(mean absolute percentage error)은 4.5% 수준이며, 외기 온도를 추가한 모형의 경우 오차율의 절대값 평균은 5.13%임을 확인하였다.

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

Assessment of Scale Effects on Dynamics of Water Quality and Quantity for Sustainable Paddy Field Agriculture

  • Kim, Min-Young;Kim, Min-Kyeong;Lee, Sang-Bong;Jeon, Jong-Gil
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.123-126
    • /
    • 2010
  • Modeling non-point pollution across multiple scales has become an important environmental issue. As a more representative and practical approach in quantifying and qualifying surface water, a modular neural network (MNN) was implemented in this study. Two different site-scales ($1.5\;{\times}\;10^5$ and $1.62\;{\times}\;10^6\;m^2$) with the same plants, soils, and paddy field management practices, were selected. Hydrologic data (rainfall, irrigation and surface discharge) and water quality data (time-series nutrient loadings) were continuously monitored and then used for the verification of MNN performance. Correlation coefficients (R) for the results predicted from the networks versus measured values were within the range of 0.41 to 0.95. The small block could be extrapolated to the large field for the rainfall-surface drainage process. Nutrient prediction produced less favorable results due to the complex phenomena of nutrients in the drainage water. However, the feasibility of using MNN to generate improved prediction accuracy was demonstrated if more hydrologic and environmental data are provided. The study findings confirmed the estimation accuracy of the upscaling from a small-segment block to large-scale paddy field, thereby contributing to the establishment of water quality management for sustainable agriculture.

태풍 내습 시 지상 최대풍 추정을 위한 WRF 수치모의 사례 연구 : 태풍 RUSA와 MAEMI를 대상으로 (A Case Study of WRF Simulation for Surface Maximum Wind Speed Estimation When the Typhoon Attack : Typhoons RUSA and MAEMI)

  • 정우식;박종길;김은별;이보람
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.517-533
    • /
    • 2012
  • This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.

은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구 (A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model)

  • 전진호;김민수
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.229-235
    • /
    • 2012
  • 경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인, 금융기관 등의 외환거래 참가가들에게 외환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위하여 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향후 예측에 적용한다. 실제의 원/달러 환율데이터를 적용하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.