DOI QR코드

DOI QR Code

A Study of Short-term Won/Doller Exchange rate Prediction Model using Hidden Markov Model

은닉마아코프모델을 이용한 단기 원/달러 환율예측 모형 연구

  • Received : 2012.08.28
  • Accepted : 2012.10.12
  • Published : 2012.10.31

Abstract

Forex trading participants, due to the intensified economic internationalization exchange risk avoidance measures are needed. In this research, Model suitable for estimation of time-series data, such as stock prices and exchange rates, through the concealment of HMM and estimate the short-term exchange rate forecasting model is applied to the prediction of the future. Estimated by applying the optimal model if the real exchange rate data for a certain period of the future will be able to predict the movement aspect of it. Alleged concealment of HMM. For the estimation of the model to accurately estimate the number of states of the model via Bayesian Information Criterion was confirmed as a model predictive aspect of physical exercise aspect and predict the movement of the two curves were similar.

경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인, 금융기관 등의 외환거래 참가가들에게 외환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위하여 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향후 예측에 적용한다. 실제의 원/달러 환율데이터를 적용하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.

Keywords

References

  1. S. Shin.,"Evaluation exchange rate of artificial neural network and moving average method", Finance Research, Vol. 9, no. 1, pp103-135, 1995.
  2. L. Rabiner, " A tutorial on Hidden Markov Models and selected applications in speech recognition," Proc. of IEEE77, pp.257-286, 1989. https://doi.org/10.1109/5.18626
  3. J. Jeon, "A study on determining prediction models using model-based clustering of time series data", Dankook Univ Ph. D, 2007.
  4. M. Siddiqi, J. Gordon and W. Moore.,"Fast State Discovery for HMM Moel Selection and Learning," In Proc. Int'l Conference on Artificial Intelligence and Statistics, 2007.
  5. Y. Cho.,"A study on semantic pattern matching and prediction of time series data", Dankook Univ Ph. D, 2009.
  6. Cheeseman, P., and Stutz, J. "Bayesian classification(autoclass)" Kluwer Academic Publishers, Vol 70. pp117-126, 1996.
  7. Heckerman, D., Geiger, D., and Chekering, D. M. "A tutorial on learning with bayesian networks," machine Learning 20, pp.197-243, 1995.
  8. J. Jeon and m. Kim,"A study of criterion for efficient clustering estimation of temporal data", The Institute of Webcasting, Internet and Telecommunication, Vol. 11, no. 5, pp 139-144, 2011.