The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.181-193
/
2022
This paper seeks to investigate major macroeconomic factors and bond yield interactions in Thai bond markets, with the goal of forecasting future bond yields. This study examines the best predictive yields for future bond yields at different maturities of 1-, 3-, 5-, 7-, and 10-years using time series data of economic indicators covering the period from 1998 to 2020. The empirical findings support the hypothesis that macroeconomic factors influence bond yield fluctuations. In terms of forecasting future bond yields, static predictions reveal that in most cases, the BVAR model offers the best predictivity of bond rates at various maturities. Furthermore, the BVAR model has the best performance in dynamic rolling-window, forecasting bond yields with various maturities for 2-, 4-, and 8-quarters. The findings of this study imply that the BVAR model forecasts future yields more accurately and consistently than other competitive models. Our research could help policymakers and investors predict bond yield changes, which could be important in macroeconomic policy development.
Manpower demand forecasting in private security industry can be used for both policy and information function. At a time when police agencies have fewer resources to accomplish their goals, forming partnership with private security firms should be a viable means to choose. But without precise understanding of each other, their partnership could be superficial. At the same time, an important debate is coming out whether security industry will continue to expand in numbers of employees, or level-off in the near future. Such debates are especially important for young people considering careers in private security industry. Recently, ARIMA model has been widely used as a reliable instrument in the many field of industry for demand forecasting. An ARIMA model predicts a value in a response time series as a linear combination of its own past values, past errors, and current and past values of other time series. This study conducts a short-term forecast of manpower demand in private security industry using ARIMA model. After obtaining yearly data of private security officers from 1976 to 2008, this paper are forecasting future trends and proposing some policy orientations. The result shows that ARIMA(0, 2, 1) model is the most appropriate one and forecasts a minimum of 137,387 to maximum 190,124 private security officers will be needed in 2013. The conclusions discuss some implications and predictable changes in policing and coping strategies public police and private security can take.
This paper reviews the categories and properties of risk measures, analyzes the classes and structural equations of volatility forecasting models, and presents the practical methodologies and their expansion methods of estimating and forecasting the volatilities of exchange rates using Excel spreadsheet modeling. We apply the GARCH(1,1) model to the Korean won(KRW) denominated daily and monthly exchange rates of USD, JPY, EUR, GBP, CAD and CNY during the periods from January 4, 1998 to December 31, 2009, make the estimates of long-run variances in the returns of exchange rate calculated as the step-by-step change rate, and test the adequacy of estimated GARCH(1,1) model using the Box-Pierce-Ljung statistics Q and chi-square test-statistics. We demonstrate the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the monthly series except the semi-variance GARCH(1,1) applied to KRW/JPY100 rate. But we reject the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the daily series because of the very high Box-Pierce-Ljung statistics in the respective time lags resulting to the self-autocorrelation. In conclusion, the GARCH(1,1) model provides for the easy and helpful tools to forecast the exchange rate volatilities and may become the powerful methodology to overcome the application difficulties with the spreadsheet modeling.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.3
/
pp.163-172
/
2016
Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.53
no.10
/
pp.529-535
/
2004
Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.
Nowadays, the Designated Driver Services employ dynamic pricing, which adapts in real-time based on nearby driver availability, service user volume, and current weather conditions during the user's request. The uncertain volatility is the main cause of price increases, leading to customer attrition and service refusal from driver. To make a good Designated Driver Services, development of a demand forecasting model is required. In this study, we propose developing a demand forecasting model using data from the Designated Driver Service by considering normal and peak periods, such as rush hour and rush day, as prior knowledge to enhance the model performance. We propose a new methodology called Time-Series with Conditional Probability(TSCP), which combines conditional probability and time-series models to enhance performance. Extensive experiments have been conducted with real Designated Driver Service data, and the result demonstrated that our method outperforms the existing time-series models such as SARIMA, Prophet. Therefore, our study can be considered for decision-making to facilitate proactive response in Designated Driver Services.
The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.
Journal of the Korean Data and Information Science Society
/
v.10
no.2
/
pp.485-500
/
1999
The systematic forecast of interest rates with liberalization was on the rise to important problems in the money market. Liberalization and globalization of the money market produced a seriously change as a compatition among the money market. Profits of an organ of monetary circulation are, also, definitively influenced by a change of interest rates. Hence most of the organ of monetary circulation studied to a scientific and systematic analysis for deterministic factors which have an effect on interest rates and progress development of a forecasting model of interest rates. In this paper, we develope the forecasting system which has highly forecasting performance based on a number of time series models for interest rates and discuss practical use of this system.
Recently, many cities around the world introduced and operated shared bicycle system to reduce the traffic and air pollution. Seoul also provides shared bicycle service called as "Ddareungi" since 2015. As the use of shared bicycle increases, the demand for bicycle in each station is also increasing. In addition to the restriction on budget, however, there are managerial issues due to the different demands of each station. Currently, while bicycle rebalancing is used to resolve the huge imbalance of demands among many stations, forecasting uncertain demand at the future is more important problem in practice. In this paper, we develop forecasting model for demand for Seoul shared bicycle using statistical time series analysis and apply our model to the real data. In particular, we apply Holt-Winters method which was used to forecast electricity demand, and perform sensitivity analysis on the parameters that affect on real demand forecasting.
The seasonal adjustment is an essential process in analyzing the time series of economy and business. There are various methods to adjust seasonal effect such as moving average, extrapolation, smoothing and X11. One of the powerful adjustment methods is X11-ARIMA Model which is popularly used in Korea. This method was delivered from Canada. However, this model has been developed to be appropriate for Canadian and American environment. Therefore, we need to review whether the Xl1-ARIMA Model could be used properly in Korea. In this study, we have applied the method to the annual sales of refrigerator sales in A electronic company. We appreciated the adjustment by result analyzing the time series components such as seasonal component, trend-cycle component, and irregular component, with the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.