• Title/Summary/Keyword: Time-multiplexing scheme

Search Result 168, Processing Time 0.026 seconds

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

STCDD Cooperative Transmission Scheme for Improvement of Reliability in OFDM Based UWB System (OFDM 기반 UWB 시스템의 신뢰도 향상을 위한 STCDD 협력 전송 기법)

  • Song, Hyoung-Kyu;Song, Jin-Hyuk;Yoon, Jae-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.547-554
    • /
    • 2010
  • Recently, the multi-band orthogonal frequency division multiplexing(MB-OFDM) system, one of UWB system, can satisfy the requirement and can be applied to various wireless communication services because ultra-wideband(UWB) is a wireless communication technique that supports high data rate with low power. In this paper, the method applying Alamouti's space time block code(STBC) and cyclic delay diversity(CDD) is proposed. The proposed method can be easily applied with arbitrary number of relays and only needs two time slots of quasi stationary assumption. And it is applied to the MB-OFDM system. Second, an optimal relaying scheme based on decode-and-forward(DF) method is proposed which is provides good error performance compared to conventional schemes.

An Implementation of the $5\times5$ CNN Hardware and the Pre.Post Processor ($5\times5$ CNN 하드웨어 및 전.후 처리기 구현)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that of the pixels involved in the practical large image. In this parer, the $5\times5$ CNN hardware and the pre post processor which can be used for processing the real large image with a time-multiplexing scheme are implemented. The implemented $5\times5$ CNN hardware and pre post processor is applied to the edge detection of $256\times256$ lena image to evaluate the performance. The total number of block. By the time-multiplexing process is about 4,000 blocks and to control pulses are needed to perform the pipelined operation or the each block. By the experimental resorts, the implemented $5\times5$ CNN hardware and pre post processor can be used to the real large image processing.

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Performance Analysis of a New Adaptive PTS Scheme for Reducing the PAPR and High Speed Processing in OFDM Systems (OFDM 시스템에서 PAPR기 감소와 고속처리를 위한 새로운 적응형 PTS 기법의 성능분석)

  • 채주호;임연주;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.710-716
    • /
    • 2003
  • OFDM is a very attractive technique for achieving high-bit-rate data transmission and high spectrum efficiency. However one of disadvantages of OFDM signal is the high PAPR characteristic when multicarriers are added up coherently. In this paper, we propose an adaptive PTS scheme using two threshold levels for PAPR reduction and reducing the amount of PAPR calculations with clipping scheme. Simulation results show that it is almost same between average bit error rate performance of the proposed scheme and that of a conventional scheme. Also, we obtain a great performance gain in the amount of calculations compared to the conventional scheme. Therefore, proposed system has a good performance in data processing time in OFDM wireless communication systems.

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.

Limited Feedback Performance Aanlysis of Regularized Joint Spatial Division and Multiplexing Scheme (정규화된 결합 공간 분할 다중화 기법의 제한된 피드백 환경에서 성능 분석)

  • Song, Changick
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.420-424
    • /
    • 2021
  • The massive MIMO system, which is a core technology of 5G communication systems, has a problem that it is difficult to implement in a frequency division duplex system based on limited channel feedback because a large amount of channel information is required at the transmitting end. In order to solve this problem, the Joint Spatial Division and Multiplexing (JSDM) technique that dramatically reduces the channel information requirement by removing interference between the user groups using channel correlation information that does not change for a long time has been proposed. Recently, a regularized JSDM technique has been proposed to further improve performance by allowing residual interference between the user groups. However, such JSDM-related studies were mainly designed to focus on inter-group interference cancellation, and thus performance analysis was not performed in a more realistic environment assuming limited feedback in the intra-group interference cancellation phase. In this paper, we analyze the performance of the JSDM and regularized JSDM techniques according to the number of groups and users in a limited feedback environment, and through the simulation results, demonstrate that the regularized JSDM technique shows a more remarkable advantage compared to the existing JSDM in a limited feedback environments.

A Phase Noise Reduction Scheme for OFDM Systems (OFDM 시스템의 위상잡음 감쇄기법)

  • Park Kyung-won;Jeon Won-gi;Paik Jong-ho;Yang Won-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.465-473
    • /
    • 2005
  • In this paper, the reduction scheme of Interchannel Interference(ICI) caused by the phase noise in Orthogonal Frequency Division Multiplexing(OFDM) systems for archiving high data rates is proposed. The performance of conventional common phase error(CPE) compensation method is degraded by the phase noise with wide 3dB bandwidth in OFDM systems width a higher-order constellation. After estimating dominant ICI coefficients using pilot subcarriers and data subcarriers adjacent to pilot subcarriers, the proposed scheme compensates OFDM signals distorted by the phase noise using estimated coefficients in the time or frequency domain. Also, in order to determine the length of dominant ICI coefficients effectively, the estimation method of the 3dB bandwidth of the phase noise is proposed. The proposed phase noise reduction method is shown to improve the Bit Error Ratio(BER) performance compared with the conventional CPE compensation.

Prototype of a Peak to Average Power Ratio Reduction Scheme in Orthogonal Frequency Division Multiplexing Systems

  • Varahram, Pooria;Ali, Borhanuddin Mohd;Mohammady, Somayeh;Reza, Ahmed Wasif
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2201-2216
    • /
    • 2015
  • Peak to average power ratio (PAPR) is one of the main imperfections in the broadband communication systems with multiple carriers. In this paper, a new crest factor reduction (CFR) scheme based on interleaved phase sequence called Dummy Sequence Insertion Enhanced Partial Transmit Sequence (DSI-EPTS) is proposed which effectively reduces the PAPR while at the same time keeps the total complexity low. Moreover, the prototype of the proposed scheme in field programmable gate array (FPGA) is demonstrated. In DSI-EPTS scheme, a new matrix of phase sequence is defined which leads to a significant reduction in hardware complexity due to its less searching operation to extract the optimum phase sequence. The obtained results show comparable performance with slight difference due to the FPGA constraints. The results show 5 dB reduction in PAPR by applying the DSI-EPTS scheme with low complexity and low power consumption.