• Title/Summary/Keyword: Time-multiplexing scheme

Search Result 168, Processing Time 0.022 seconds

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.

A MAC Protocol Mechanism for Mobile IP over Wireless LANs

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.194-198
    • /
    • 2003
  • Recently, the use of TCP/IP protocols over wireless LANs poses significant problems. In this paper, we have analyzed transmission control protocol (TCP) packet transmission time for mobile IP over wireless local area networks (LANs) using a proposed a new random backoff scheme. We call it as a proxy backoff scheme. It is considered the transmission time of TCP packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (AWGN) channel. From the results, a proposed proxy backoff scheme produces a better performance than an original random backoff in mobile IP over wireless LANs environment. Also, in OFDM/quadrature phase shift keying (QPSK) medium access control (MAC), we have obtained that the transmission time in wireless channel decreases as the TCP packet size increases.

Scheme for transmitting Data and TDM based on E-PON (E-PON 기반 데이터 및 TDM 전달을 위한 방안)

  • Jin, Geol;Park, Chun-Kwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.465-468
    • /
    • 2007
  • This paper addresses the scheme for transmitting Data and TDM signals based on E-PON. E-PON technology, that combines low-cost Ethernet technology and optical fiber infra-structure, has been appeared as a solution of next generation access network. The transmission speed of E-PON is 1Gbps and symmetric in both direction, such as downstream and upstream. Therefore, it is possible to save the cost through sample network architecture, efficient operation, and low maintenance cost of optical IP Ethernet network. By adding TBMoIP(Time Division Multiplexing over Internet Protocol) module to this E-PON system, and implementing QoS(Quality of Service) control function, this system can provide data and TDM service efficiently.

  • PDF

Performance Analysis of Fine Frequency Synchronization Scheme in Mobile WiMAX Systems (Mobile WiMAX 시스템에서 미세 주파수 동기화 기법의 성능 분석)

  • Yang, Hyun;Jeong, Kwang-Soo;Lee, Kyeong-Il;Yi, Jae-Hoon;You, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.815-820
    • /
    • 2008
  • Carrier frequency offset (CFO) is one of the most important problems in an orthogonal frequency division multiplexing (OFDM) system, which seriously degrades the performance of the systems due to its time-variant behavior. In this paper, the performance of a pilot-assisted fine CFO estimator in OFDM-based mobile WiMAX systems is analyzed. Analytical closed-form expression of the mean square error (MSE) of the post-FFT based CFO synchronization scheme is reported for time-variant fading channels. Taking into account the frame structure of the IEEE802.16e standard, simulation results are used to verify the theoretical analysis developed in this paper.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Performance Analysis of Multiplexing Gain over Timer_CU in AAL2 on UMTS Network (UMTS망의 AAL2에서 Timer_CU에 따른 다중화 이득 성능분석)

  • 이현진;김재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.35-43
    • /
    • 2004
  • An AAL2 transmission scheme is used to deliver voice and data traffic between Node-B and RNC on 3G WCDMA network. To predict performance of AAL2 multiplexing precisely, we derived analytically bandwidth gain and cell packing density using discrete-time Markov chain model for voice service and validated these results with simulation. We also performed detailed simulation for AAL2 multiplexing in a concentrator. Based on the analytical result, we propose the engineering guideline to select the optimal Timer_CU in a Node-B. We found that there is no major benefit of additional AAL2 multiplexing in a concentrator and the benefit of AAL2 switching in tub for data services is much less than that for voice service.

A Study on Real Time and Non-real Time Traffic Multiplexing with Congestion Control (폭주제어를 포함한 실시간 및 비실시간 트래픽의 다중화에 관한 연구)

  • 송관호;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.750-760
    • /
    • 1994
  • In this paper we proposed a multiplexing scheme of real time and non-real traffics in which a congestion control is embedded. Real time traffics are assumed to be nonqueuable and have preemptive priority over non-real time traffics in seizing the common output link, whereas the non-real time traffics wait in the common buffer if the output link is not available for transmission. Real time traffics are encoded according to the bandwidth reduction strategy, paticularly when congestion occurs among non-real time traffics. This scheme provides us an efficient way for utilizing the costly bandwidth resources, by accommodation as many real time traffics as possible with gauranteeing its mimimum bandwidth requirements, and also resloving the congestion encountered among non-real time traffics. We describe the system as a Markov queueing system, provide the analysis by exploiting the matrix geometric method, and present the performance for various performance measures of interest. Some numerical results are also provided.

  • PDF

Selective Mapping of Partial Tones (SMOPT) Scheme for PAR Reduction in OFDM Systems (OFDM 시스템에서 PAR을 줄이는 SMOPT 기법)

  • Yoo Seung soo;Yoon Seok ho;Kim Sun yong;Song Iick ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.230-238
    • /
    • 2005
  • An orthogonal frequency division multiplexing (OFDM) system consists of a number of independently modulated subcarriers and, thus, a high peak-to-average power ratio (PAR) can occur when the subcarriers are added coherently. The high PAR brings such disadvantages as an increased complexity of the analog-to-digital (ADC) and digital-to-analog (DAC) converters and a reduced efficiency of the radio frequency (RF) power amplifier. In this paper, we propose a novel PAR reduction scheme called selective mapping of partial tones (SMOPT). The SMOPT scheme has a reduced complexity, lower sensitivity to peak reduction tones (PRT) positions, and a shorter processing time as compared with the conventional tone reservation (TR) scheme. The performance of the SMOPT scheme is analyzed based on the IEEE 802.1la wireless local area network(WLAM) physical layer model. Numerical results show that the SMOPT scheme outperforms the TR scheme under various scenarios.

Power Allocation and Subcarrier Assignment for Joint Delivery of Unicast and Broadcast Transmissions in OFDM Systems

  • Lee, Deokhui;So, Jaewoo;Lee, Seong Ro
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.375-386
    • /
    • 2016
  • Most existing studies on broadcast services in orthogonal frequency division multiplexing (OFDM) systems have focused on how to allocate the transmission power to the subcarriers. However, because a broadcasting system must guarantee quality of service to all users, the performance of the broadcast service dominantly depends on the channel state of the user who has the lowest received signal-to-noise ratio among users. To reduce the effect of the worst user on the system performance, we propose a joint delivery scheme of unicast and broadcast transmissions in OFDM systems with broadcast and unicast best-effort users. In the proposed joint delivery scheme, the BS delivers the broadcast information using both the broadcast and unicast subcarriers at the same time in order to improve the performance of the broadcast service. The object of the proposed scheme is to minimize the outage probability of the broadcast service while maximizing the sum-rate of best-effort users. For the proposed joint delivery scheme, we develop an adaptive power and subcarrier allocation algorithm under the constraint of total transmission power. This paper shows that the optimal power allocation over each subcarrier in the proposed scheme has a multi-level water filling form. Because the power allocation and the subcarrier assignment problems should be jointly solved, we develop an iterative algorithm to find the optimal solution. Numerical results show that the proposed joint delivery scheme with adaptive power and subcarrier allocation outperforms the conventional scheme in terms of the outage probability of the broadcast service and the sum-rate of best-effort users.

Optimal Power Allocation for Spatial Division Multiplexing Scheme at Relays in Multiuser Distributed Beamforming Networks (다중 사용자 분산 빔포밍 네트워크의 중계기에서의 공간 분할 다중화 기법을 위한 최적 전력 할당 방법)

  • Ahn, Dong-Gun;Seo, Bang-Won;Jeong, Cheol;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.360-370
    • /
    • 2010
  • In this paper, a distributed beamforming problem is considered in an amplify-and-forward (AF) wireless relay network consist of multiple source-destination pairs and relaying nodes. To exploit degree of freedom of the number of beamformers, in the first step, we proposed that the sources transmit their signals through orthogonal channels. During the second step, the relays transmit their received signals multiplied by complex weights to amplify and compensate for phase changes introduced by the backward channels through one common channel. The optimal beamforming vectors are obtained through minimization of the total relay transmit power while the signal-to-interference-plus-noise ratios (SINRs) at the destinations are above certain thresholds to meet a quality of services (QoSs) level. In the numerical example, it is shown that the proposed scheme needs less transmit power for moderate network data rates than other schemes, such as space division multiplexing or time-division multiplexing scheme.