• Title/Summary/Keyword: Time-delay estimation

Search Result 411, Processing Time 0.042 seconds

Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis (Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출)

  • Han, S.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

Error Intensity Function Models for ML Estimation of Signal Parameter, Part II : Applications to Gaussian and Impulsive Noise Environments (신호 파라미터의 ML추정 기법에 대한 에러 밀도 함수모델에 관한 연구 II : 가우시안 및 임펄스 잡음 환경에의 적용)

  • Kim, Joong Kyu
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.85-95
    • /
    • 1995
  • The error intensity models for the ML estimation of a signal parameter have been developed in a companion paper [1]. While the methods described in [1] are applicable to any estimation problem with continuous parameters, our main application in this paper is the time delay estimation, and comparisons among the models derived in [1] (i.e. LC, LM, and ALM models)have been made. We first consider the case where only additive Gaussian noise is involved, and then the shot noise environment where coherent impulsive noise is also involved in addition to the Gaussian noise. We compare the models in terms of the probability of error, MSE(Mean Squared Error), and the computational complexity, which are the most important performance criteria in the analysis of parameter estimation. In conclusion, the ALM model turned out to be the most adequate model of all from the viewpoints of the criteria mentioned above.

  • PDF

A Study on Three Dimensional Array Shape Calibration of the Bottom Mounted Array by Iterative Least Squares (최소자승법을 이용한 해저고정형 선배열 센서의 3차원 배열형상 추정기법 연구)

  • Choi, jae-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.370-375
    • /
    • 2004
  • This paper proposes an algorithm that estimates three dimensional array shape calibration about the bottom-mounted sensor array. under the assumption that the active sources are in the far-field with unknown positions. Under some assumptions. we calculate the sensor positions via an algebraic solutions of a least squares problem that the linear equations are related to the sensor positions and directions or arrival. We give examples of algorithm performance from both computer simulations and sea test. We also illustrate the performance of sensor positions estimation as a function of time delay estimation variance and the distribution of the localizing sources.

A study on the sequential algorithm for simultaneous estimation of TDOA and FDOA (TDOA/FDOA 동시 추정을 위한 순차적 알고리즘에 관한 연구)

  • 김창성;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.72-85
    • /
    • 1998
  • In this paper, we propose a new method that sequentially estimates TDOA(Time Delay Of Arrival) and FDOA(Frequency Delay Of Arrival) for extracting the information about the bearing and relative velocity of a target in passive radar or sonar arrays. The objective is to efficiently estimate the TDOA and FDOA between two sensor signal measurements, corrupted by correlated Gaussian noise sources in an unknown way. The proposed method utilizes the one dimensional slice function of the third order cumulants between the two sensor measurements, by which the effect of correlated Gaussian measurement noises can be significantly suppressed for the estimation of TDOA. Because the proposed sequential algoritjhm uses the one dimensional complex ambiguity function based on the TDOA estimate from the first step, the amount of computations needed for accurate estimationof FDOA can be dramatically reduced, especially for the cases where high frequency resolution is required. It is demonstrated that the proposed algorithm outperforms existing TDOA/FDOA estimation algorithms based on the ML(maximum likelihood) criterionandthe complex ambiguity function of the third order cumulant as well, in the MSE(mean squared error) sense and computational burden. Various numerical resutls on the detection probability, MSE and the floatingpoint computational burden are presented via Monte-Carlo simulations for different types of noises, different lengths of data, and different signal-to-noise ratios.

  • PDF

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Design of Irrigation Pumping System Controller for Operational Instrument of Articulation (관절경 수술을 위한 관주(灌注)시스 (Irrigation Pumping System) 제어기의 개발)

  • 김민수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1294-1297
    • /
    • 2003
  • With the development of medical field, many kinds of operations have been performed on human articulation. Arthroscopic surgery, which has Irrigation Pumping System for security of operator vision and washing spaces of operation, has been used for more merits than others. In this paper, it is presented that the research on a reliable control algorithm of the pumping system instrument for arthroscopic surgery. Before clinical operation, the flexible artificial articulation model is used for realizing the model the most same as human's and the algorithm has been exploited for it. This system is considered of the following; limited sensing point, dynamic effect by compliance, time delay by fluid flow and so on. The system is composed with a pressure controller, a regulator for keeping air pressure, an airtight tank that can have distilled water packs, artificial articulation and a measuring system, and has controlled by the feedback of pressure sensor on the artificial articulation. Also the system has applied to Smith Predictor for time delay and the parameter estimation method for the most suitable system with both the experiment data and modeling. In this paper, the pressure error that is between an air pressure tank and an artificial articulation was measured so that the system could be presumed and then the controller had developed for performing State-Feedback. Finally, the controller with a real microprocessor has realized. The confidence of system can be proved by applying this control algorithm to an artificial articulation experiment material.

  • PDF

Implementation Method for an Induction Motor Drive System Using Network Sensors (네트워크 센서를 이용한 유도전동기 구동시스템 구현 기법)

  • Kim, Dong-Sik;Chun, Tae-Won;Ahn, Jung-Ryol;Kim, Heung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.563-569
    • /
    • 2006
  • In this paper, the system to control the PWM inverter-induction motor drive system including ac current sensors, voltage sensors, and an encoder through the network is developed. Although the network-based control for an induction motor drive system is becoming increasingly important at factory automations, there will inevitably be time delay from the sensors to the motor control system, which may cause the instability. The algorithm to minimize the efforts for network induced time delay of sensor data is proposed, using both the synchronous signal and the method for estimating sensor data. The experiments with DSP are carried out in order to verify proposed algorithms.

A Channel Estimation Scheme for OFDM receiver in a Fast Mobile SFN Channel (고속 이동 SFN 채널에서 OFDM 수신기의 채널 추정 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.552-561
    • /
    • 2016
  • In OFDM system, frequency-domain sub-carriers of a symbol generally consist of data sub-carriers and scattered pilot sub-carriers and in the receiver, channel is estimated through time-axis interpolating pilot sub-carriers of several OFDM symbols. However, time-axis interpolation fails to keep track of rapid channel variation caused by fast moving receiver. Although symbol by symbol channel estimation without time-axis interpolation enables fast estimation, the performance is severely degraded for a long delay spread channel in a single frequency networks (SFNs) because of insufficient pilot sub-carriers. In this paper, a channel estimation scheme for OFDM receiver in a fast mobile SFN channel is proposed. The proposed scheme is applied to DVB-T receiver to improve the Doppler mobile performance in SFN channel.

Robust Signal Transition Density Estimation by Considering Reconvergent Path (재수렴성 경로를 고려한 견실한 신호 전이 밀도 예측)

  • Kim, Dong-Ho;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A robust signal transition density propagation method for a zero delay model is presented to obtain the signal transition density for estimating the power consumption. The power estimation for the zero delay model is a proper criteria for the lower boundary of power consumption. Since the input characteristics are generally unknown at design stage, robust estimation for wide range input characteristics is very important for the power consumption. In this paper, a conventional transition estimation method will be explored. And this exploration will be analyzed with the input/output signal transition behavior and used to propose the robust signal transition density propagation for the power estimation. In order to apply to practical circuits, the reconvergent path, which is crucial to affect the exactness of the power estimation, will be studied and an algorithm to take the reconvergent path into consideration will be presented. In experiment, the proposed methodology shows better robustness, comparable accuracy and elapsed time compared to the conventional methods.