• Title/Summary/Keyword: Time-based Clustering

Search Result 728, Processing Time 0.034 seconds

Separating nanocluster Si formation and Er activation in nanocluster-Si sensitized Er luminescence

  • Kim, In-Yong;Sin, Jung-Hun;Kim, Gyeong-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.109-109
    • /
    • 2010
  • $Er^{3+}$ ion shows a stable and efficient luminescence at 1.54mm due to its $^4I_{13/2}\;{\rightarrow}\;^4I_{15/2}$ intra-4f transition. As this corresponds to the low-loss window of silica-based optical fibers, Er-based light sources have become a mainstay of the long-distance telecom. In most telecom applications, $Er^{3+}$ ions are excited via resonant optical pumping. However, if nanocluster-Si (nc-Si) are co-doped with $Er^{3+}$, $Er^{3+}$ can be excited via energy transfer from excited electrical carriers in the nc-Si as well. This combines the broad, strong absorption band of nc-Si with narrow, stable emission spectra of $Er^{3+}$ to allow top-pumping with off-resonant, low-cost broadband light sources as well as electrical pumping. A widely used method to achieve nc-Si sensitization of $Er^{3+}$ is high-temperature annealing of Er-doped, non-stoichiometric amorphous thin film with excess Si (e.g.,silicon-rich silicon oxide(SRSO)) to precipitate nc-Si and optically activate $Er^{3+}$ at the same time. Unfortunately, such precipitation and growth of nc-Si into Er-doped oxide matrix can lead to $Er^{3+}$ clustering away from nc-Si at anneal temperatures much lower than ${\sim}1000^{\circ}C$ that is necessary for full optical activation of $Er^{3+}$ in $SiO_2$. Recently, silicon-rich silicon nitride (SRSN) was reported to be a promising alternative to SRSO that can overcome this problem of Er clustering. But as nc-Si formation and optical activation $Er^{3+}$ remain linked in Er-doped SRSN, it is not clear which mechanism is responsible for the observed improvement. In this paper, we report on investigating the effect of separating the nc-Si formation and $Er^{3+}$ activation by using hetero-multilayers that consist of nm-thin SRSO or SRSN sensitizing layers with Er-doped $SiO_2$ or $Si_3N_4$ luminescing layers.

  • PDF

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

A Research on the Teaser Video Production Method by Keyframe Extraction Based on YCbCr Color Model (YCbCr 컬러모델 기반의 키프레임 추출을 통한 티저 영상 제작 방법에 대한 연구)

  • Lee, Seo-young;Park, Hyo-Gyeong;Young, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.439-445
    • /
    • 2022
  • Due to the development of online media platforms and the COVID-19 incident, the mass production and consumption of digital video content are rapidly increasing. In order to select digital video content, users grasp it in a short time through thumbnails and teaser videos, and select and watch digital video content that suits them. It is very inconvenient to check all digital video contents produced around the world one by one and manually edit teaser videos for users to choose from. In this paper, keyframes are extracted based on YCbCr color models to automatically generate teaser videos, and keyframes extracted through clustering are optimized. Finally, we present a method of producing a teaser video to help users check digital video content by connecting the finally extracted keyframes.

Design and Implementation of Algorithms for the Motion Detection of Vehicles using Hierarchical Motion Estimation and Parallel Processing (계층화 모션 추정법과 병렬처리를 이용한 차량 움직임 측정 알고리즘 개발 및 구현)

  • 강경훈;정성태;이상설;남궁문
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1189-1199
    • /
    • 2003
  • This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using tile pipeline and the data flow technique. The proposed method has been implemented by using an embedded system. The proposed block matching algorithm has been implemented on PLDs(Programmable Logic Device) and clustering algorithm has been implemented by ARM processor. Experimental results show that the proposed system detects the motion of vehicles in real-time.

  • PDF

Types and Characteristics Analysis of Human Dynamics in Seoul Using Location-Based Big Data (위치기반 빅데이터를 활용한 서울시 활동인구 유형 및 유형별 지역 특성 분석)

  • Jung, Jae-Hoon;Nam, Jin
    • Journal of Korea Planning Association
    • /
    • v.54 no.3
    • /
    • pp.75-90
    • /
    • 2019
  • As the 24-hour society arrives, human activities in daytime and nighttime urban spaces are changing drastically, and the need for new urban management policies is steadily increasing. This study analyzes the types and characteristics of Seoul's human dynamics using location-based big data and the results are summarized as follows. First, the pattern of human dynamics in Seoul repeats itself every 7 days. Second, the types of human dynamics in Seoul can be classified into five types, and each of type has its own unique time-series and local characteristics. Third, the degree of match between human dynamics and zoning system in urban planning legislation was highest in 'Type 1' residence pattern and low in other types. The following implications can be drawn from these results. First, This paper examined the methodology of analyzing the regional characteristics of Seoul through the human dynamics and obtained meaningful results. Second, This paper can derive reliable and objective pattern analysis results using Big data that reflect the overall population characteristics. Third, the scale of night-time activity in the urban space of Seoul was understood, and its distribution, patterns and characteristics identified.

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

A Study on Classification of Waveforms Using Manifold Embedding Based on Commute Time (컴뮤트 타임 기반의 다양체 임베딩을 이용한 파형 신호 인식에 관한 연구)

  • Hahn, Hee-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.148-155
    • /
    • 2014
  • In this paper a commute time embedding is implemented by organizing patches according to the graph-based metric, and its properties are investigated via changing the number of nodes on the graph.. It is shown that manifold embedding methods generate the intrinsic geometric structures when waveforms such as speech or music instrumental sound signals are embedded on the low dimensional Euclidean space. Basically manifold embedding algorithms only project the training samples on the graph into an embedding subspace but can not generalize the learning results to test samples. They are very effective for data clustering but are not appropriate for classification or recognition. In this paper a commute time guided transform is adopted to enhance the generalization ability and its performance is analyzed by applying it to the classification of 6 kinds of music instrumental sounds.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

An Hybrid Clustering Using Meta-Data Scheme in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 메타 데이터 구조를 이용한 하이브리드 클러스터링)

  • Nam, Do-Hyun;Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.313-320
    • /
    • 2008
  • The dynamic clustering technique has some problems regarding energy consumption. In the cluster configuration aspect the cluster structure must be modified every time the head nodes are re-selected resulting in high energy consumption. Also, there is excessive energy consumption when a cluster head node receives identical data from adjacent cluster sources nodes. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects duster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. Furthermore, the issue of redundant data occurring at the cluster head node is dealt with by broadcasting metadata of the initially received data to prevent reception by a sensor node with identical data. A simulation experiment was performed to verify the validity of the proposed approach. The results of the simulation experiments were compared with the performances of two of the must widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 29.3% and 21.2% more efficient than LEACH and HEED, respectively.

  • PDF

Finding Genes Discriminating Smokers from Non-smokers by Applying a Growing Self-organizing Clustering Method to Large Airway Epithelium Cell Microarray Data

  • Shahdoust, Maryam;Hajizadeh, Ebrahim;Mozdarani, Hossein;Chehrei, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.111-116
    • /
    • 2013
  • Background: Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells.Materials and Methods: Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. Results: The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. Conclusions: This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.