• 제목/요약/키워드: Time-based Clustering

검색결과 727건 처리시간 0.027초

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.

계층적 문서 클러스터링을 이용한 실세계 질의 메일의 자동 분류 (Automatic Categorization of Real World FAQs Using Hierarchical Document Clustering)

  • 류중원;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.187-190
    • /
    • 2001
  • Due to the recent proliferation of the internet, it is broadly granted that the necessity of the automatic document categorization has been on the rise. Since it is a heavy time-consuming work and takes too much manpower to process and classify manually, we need a system that categorizes them automatically as their contents. In this paper, we propose the automatic E-mail response system that is based on 2 hierarchical document clustering methods. One is to get the final result from the classifier trained seperatly within each class, after clustering the whole documents into 3 groups so that the first classifier categorize the input documents as the corresponding group. The other method is that the system classifies the most distinct classes first as their similarity, successively. Neural networks have been adopted as classifiers, we have used dendrograms to show the hierarchical aspect of similarities between classes. The comparison among the performances of hierarchical and non-hierarchical classifiers tells us clustering methods have provided the classification efficiency.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

다양한 공간객체의 데이터 마이닝을 위한 공간 클러스터링 기법의 설계 (Design of Spatial Clustering Method for Data Mining of Various Spatial Objects)

  • 문상호;최진오;김진덕
    • 한국정보통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.955-959
    • /
    • 2004
  • 공간 데이터 마이닝을 위한 기존의 클러스터링 기법들은 점 객체만을 대상으로 한다. 즉, 선이나 면 같은 다양한 공간 객체들을 지원하지 못한다. 이것은 클러스터링 과정에서 객체들 간의 거리 계산에 있어서, 점 객체는 용이하지만 선과 면인 경우에는 어렵기 때문이다. 본 논문에서는 이러한 문제점을 해결하기 위하여 균등 격자를 이용한 클러스터링 기법을 설계한다. 세부적으로 이 기법에서는 다각형 객체들 간의 거리 계산을 균등 격자를 이용하여 단순화시킴으로서 거리 계산에 따른 시간과 비용을 줄일 수 있다.

다각형 객체를 지원하는 공간 클러스터링 기법의 설계 (Design of Spatial Clustering Method for Spatial Objects with Polygonometry)

  • 황지완;문상호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.374-377
    • /
    • 2004
  • 공간 데이터 마이닝을 위한 기존의 클러스터링 기법들은 점 객체만을 대상으로 한다. 즉, 선이나면 같은 다양한 공간 객체들을 지원하지 못한다. 이것은 클러스터링 과정에서 객체들 간의 거리 계산에 있어서, 점 객체는 용이하지만, 선과 면인 경우에는 어렵기 때문이다. 본 논문에서는 이러한 문제점을 해결하기 위하여 균등 격자를 이용한 클러스터링 기법을 설계한다. 세부적으로 이 기법에서는 다각형 객체들 간의 거리 계산을 균등 격자를 이용하여 단순화시킴으로서 거리 계산에 따른 시간과 비용을 줄일 수 있다.

  • PDF

IoT 정보 수집을 위한 확률 기반의 딥러닝 클러스터링 모델 (Probability-based Deep Learning Clustering Model for the Collection of IoT Information)

  • 정윤수
    • 디지털융복합연구
    • /
    • 제18권3호
    • /
    • pp.189-194
    • /
    • 2020
  • 최근 IoT 네트워크는 이기종의 IoT 장치에서 발생하는 데이터를 효율적으로 처리하기 위해서 다양한 클러스터링 기법들이 연구되고 있다. 그러나, 기존 클러스터링 기법들은 정적으로 네트워크를 분할하는데 초점을 맞추고 있어서 이동이 가능한 IoT 장치에는 기존 클러스터링 기법들이 적합하지 않다. 본 논문에서는 에지 네트워크를 이용하여 IoT 장치의 정보를 수집·분석하기 위한 확률적 딥러닝 기반의 동적 클러스터링 모델을 제안한다. 제안 모델은 수집된 정보의 속성값의 빈도수를 확률적으로 딥러닝에 적용하여 서브넷을 구축한다. 구축된 서브넷은 시드로 추출된 연계 정보를 계층적 구조로 그룹핑할 때 사용하며, IoT 장치에 대한 동적 클러스터링의 속도 및 정확도를 향상시킨다. 성능평가 결과, 제안모델은 기존 모델에 비해 데이터 처리 시간이 평균 13.8% 향상되었고, 서버의 오버헤드는 기존 모델보다 평균 10.5% 낮게 나타났다. 서버에서 IoT 정보를 추출할 때의 정확도는 기존모델보다 평균 8.7% 향상되었다.

클러스터 타당성 평가기준을 이용한 최적의 클러스터 수 결정을 위한 고속 탐색 알고리즘 (Fast Search Algorithm for Determining the Optimal Number of Clusters using Cluster Validity Index)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제9권9호
    • /
    • pp.80-89
    • /
    • 2009
  • 클러스터링 알고리즘에서 최적의 클러스터 수를 결정하기 위한 효율적인 고속 탐색 알고리즘을 소개한다. 제안하는 방법은 클러스터링 적합도의 척도로 사용되는 클러스터 타당성 평가기준을 토대로 한다. 데이터 집합에 클러스터링 프로세스를 진행하여 최적의 클러스터 형상에 도달하게 되면 클러스터 타당성 평가기준은 최대 혹은 최소값을 가질 것으로 기대한다. 본 논문에서는 최적의 클러스터 개수를 찾기 위한 고속의 비소모적 탐색 방법을 설계하고 실제 클러스터링과 접목한다. 제안하는 알고리즘은 k-means++ 클러스터링 알고리즘에 적용하였고, 클러스터 타당성 평가기준으로써 CB 및 PBM 타당성 평가기준 방법을 사용하였다. 몇몇의 가상 데이터 집합과 실제 데이터 집합에 실험한 결과, 제안하는 방법은 정확도의 손실 없이 계산 효율을 획기적으로 증가시킴을 보여주었다.

DDCP: The Dynamic Differential Clustering Protocol Considering Mobile Sinks for WSNs

  • Hyungbae Park;Joongjin Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1728-1742
    • /
    • 2023
  • In this paper, we extended a hierarchical clustering technique, which is the most researched in the sensor network field, and studied a dynamic differential clustering technique to minimize energy consumption and ensure equal lifespan of all sensor nodes while considering the mobility of sinks. In a sensor network environment with mobile sinks, clusters close to the sinks tend to consume more forwarding energy. Therefore, clustering that considers forwarding energy consumption is desired. Since all clusters form a hierarchical tree, the number of levels of the tree must be considered based on the size of the cluster so that the cluster size is not growing abnormally, and the energy consumption is not concentrated within specific clusters. To verify that the proposed DDC protocol satisfies these requirements, a simulation using Matlab was performed. The FND (First Node Dead), LND (Last Node Dead), and residual energy characteristics of the proposed DDC protocol were compared with the popular clustering protocols such as LEACH and EEUC. As a result, it was shown that FND appears the latest and the point at which the dead node count increases is delayed in the DDC protocol. The proposed DDC protocol presents 66.3% improvement in FND and 13.8% improvement in LND compared to LEACH protocol. Furthermore, FND improved 79.9%, but LND declined 33.2% when compared to the EEUC. This verifies that the proposed DDC protocol can last for longer time with more number of surviving nodes.

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.

4차원 특징 벡터에 의한 레이더 신호 클러스터링 기법 (A Clustering Technique of Radar Signals using 4-Dimensional Features)

  • 이종태;주영관;김관태;전중남
    • 전자공학회논문지
    • /
    • 제51권10호
    • /
    • pp.137-144
    • /
    • 2014
  • 전자전지원시스템은 실시간 전자 공격에 대처하기 위해 레이더 신호를 수집하고 분석한다. 레이더 펄스 클러스터링 시스템은 단일 소스에 방사되는 것으로 예상되는 레이더 신호를 분류한다. 본 논문에서는 도착방향, 주파수, 펄스 폭, 연속된 펄스의 도착시간의 차이 4가지 특징을 기반으로 한 클러스터링 알고리즘을 제안하였고 실험을 통하여 제안한 알고리즘이 이동방사체의 추적과 시간적으로 분리된 신호를 다른 군집으로 분리함을 보였다.