• 제목/요약/키워드: Time-Varying Reference

검색결과 166건 처리시간 0.025초

시변 추종제어기를 위한 디지털 재설계의 개선 (Improving a Digital Redesign for Time-Varying Trackers)

  • 송현석;이호재;김도완
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.289-294
    • /
    • 2011
  • Digital redesign is yet another efficient tool to convert a pre-designed analog controller into a sampled-data one to maintain the analog closed-loop performance in the sense of state matching. A rising difficulty in developing a digital redesign technique for trackers with time-varying references is the unavailability of a closed-form discrete-time model of a system, even if it is linear time-invariant. A way to resolve this is to approximate the time-varying reference as a piecewise constant one, which deteriorates the state matching performance. Another remedy may be to decrease a sampling period, which however could numerically destabilize the optimization-based digital redesign condition. In this paper, we develop a digital redesign condition for time-varying trackers by approximating the time-varying reference through a triangular hold and by introducing delta-operated discrete-time models. It is shown that the digitally redesigned sampled-data tracker recovers the performance of the pre-designed analog tracker under a fast sampling limit. Simulation results on the formation flying of satellites convincingly show the effectiveness of the development.

MRAC 기법과 좌표변환을 이용한 PWM 인버터 구동 PMSM의 데드타임 보상기법 (Dead Time Compensation Scheme for a PWM Inverter-fed PMSM Drive Using MRAC Scheme and Coordinate Transformation)

  • 김경화
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.29-37
    • /
    • 2012
  • A simple and effective dead time compensation scheme for a PWM inverter-fed permanent magnet synchronous motor (PMSM) drive using the model reference adaptive control (MRAC) and coordinate transformation is presented. The basic concept is to first transform a time-varying disturbance caused by the dead time and inverter nonlinearity into unknown constant or slowly-varying one by the coordinate transformation, and then use the MRAC design technique to estimate this parameter in the stationary reference frame. Since the MRAC scheme is a suitable way of estimating such a parameter, the control performance can be significantly improved as compared with the conventional observer-based method tracking time-varying parameters. In the proposed scheme, the disturbance voltage caused by the dead time is effectively estimated and compensated by on-line basis without any additional circuits nor existing disadvantages as in the conventional methods. The asymptotic stability is proved and the effectiveness of the proposed scheme is verified.

시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계 (Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

Robust design scheme of VS-MRC to time-varying plant

  • Tanaka, Kanya;Shibata, Satoru;Shimizu, Akira;Sakamoto, Masaru;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.56-59
    • /
    • 1995
  • In this paper, we propose a new rubust design scheme of a variable structure type model reference control (VS-MRC) which can be applied to linear time-varing plants. Our idea is started from the hypothesis that the plant consists of two parts, i.e., one has time-invariant parameters and the other has time-varying parameters. We consider the former the nominal part of the plant and the latter a kind of disturbance to the nominal one. In this design scheme, the ordinary VS-MRC is adopted to the nominal part and the signum function is introduced to eliminate the influence of the disturbance.

  • PDF

VVVF 인버터로 구동되는 전기철도차량에서 방출되는 시변 저주파 전자계 분석 (Analysis of time-varying low-frequency electric magnetic field emitted from electric rolling stocks fed by VVVF inverter)

  • 장동욱;김주락;김형철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.507-513
    • /
    • 2010
  • This paper is described the analysis of time-varying low-frequency electric magnetic field emitted from electric rolling stocks fed by VVVF inverter, in reference to allowable magnitude for exposures to time-varying electromagnetic field issued by International Commission on Non-Ionizing Radiation Protection(ICNIRP). The level of the magnetic field strength was measured, in reference to the standard for occupational environments, which takes into account the public person's protection against the excessive emission of the low-frequency magnetic field, 5 Hz ~ 2 kHz.

  • PDF

시변 파라미터 특성을 갖는 유연한 로봇 엑츄에이터의 적응제어 (Adaptive Control of Flexible Robot Actuators with Time-Varying Parameters)

  • 박지호;조현철
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.250-254
    • /
    • 2008
  • Robot actuators are significantly important with respect to whole control system performance. This paper presents an adaptive control approach for flexible robot actuators with time-varying spring and damping nature. We first represent a perturbed system model with assumption that its information are partially known. Nominal model reference control method is employed for deriving our adaptive control law. We carry out numerical simulation to evaluate the proposed control system and compare simulation results to a well-known control method for demonstrating its effectiveness.

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

Model Reference Adaptive Control of a Time-Varying Parabolic System

  • Hong, Keum-Shik;Yang, Kyung-Jinn;Kang, Dong-Hunn
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.168-176
    • /
    • 2000
  • Related to the error dynamics of an adaptive system, averaging theorems are developed for coupled differential equations which consist of ordinary differential equations and a parabolic partial differential equation. The results are then applied to the convergence analysis of the parameter estimate errors in the model reference adaptive control of a nonautonomous parabolic partial differential equation with lowly time-varying parameters.

  • PDF

제한된 제어 입력을 갖는 시스템에 대한 시간 지연 제어기의 설계 (Design of Time Delay Controller for a System with Bounded Control Inputs)

  • 송재복;변경석
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.166-173
    • /
    • 1999
  • Reference models are used in many control algorithms for improvement of transient response characteristics. They provide desired trajectories that the plant should follow Most control systems have bounded control inputs to avoid saturation of the plant. If we design the reference models that do not account for limits of the control inputs, control performance of the system may be deteriorated. In this paper a new approach of avoiding saturation by varying the reference model for TDC(time delay control) based systems subject to step changes in the reference input. In this scheme, the variable reference model is determined based on the information on control inputs and the size of the step changes in the reference inputs. This scheme was verified by application to the BLDC motor position control system in simulations and experiments. The responses of the TDC with the variable reference model showed better tracking performance than that with the fixed reference model.

  • PDF