• Title/Summary/Keyword: Time-Varying

Search Result 3,847, Processing Time 0.028 seconds

Motion planning of a robot manipulator for time-varying obstacle avoidance using adaptive view-time (적응관측시간을 이용한 로보트 매니퓰레이터의 시변 장애물 회피 동작 계획)

  • 고낙용;최한수;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.428-433
    • /
    • 1993
  • An analytic solution approach to the time-varying obstacle avoidance problem is pursued. We use the view-time concept, especially the adaptive view-time. First. we introduce the adaptive view-time and analyze its properties. Next, we propose a view-time based motion planning method. The proposed method is applied and simulated for the collision-free motion planning of a 2 DOF robot manipulator. We simulate the robot motion under several different view-time systems. Generally, the motion planning with the adaptive view-time systems has some advantages over that with the fixed view-time systems.

  • PDF

Sum rate and Energy Efficiency of Massive MIMO Downlink with Channel Aging in Time Varying Ricean Fading Channel

  • Yang, Lihua;Yang, Longxiang;Zhu, Hongbo;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1098-1112
    • /
    • 2018
  • Achievable sum rate and energy efficiency (EE) are investigated for the massive multiple-input multiple-output (Massive MIMO) downlink with channel aging in the time varying Ricean fading channel. Specifically, the expression of the achievable sum rate of the system for the maximum ratio transmission (MRT) precoder with aged channel state information (CSI) in the time varying Ricean fading channel is first presented. Based on the expression, the effect of both channel aging and the Ricean factor on the power scaling law are studied. It is found that the transmit power of base station (BS) is scaled down by $1/{\sqrt{M}}$(where M is the number of the BS antennas) when the Ricean factor K is equal to zero (i.e., time varying Rayleigh fading channel), indicating that aged CSI does not affect the power scaling law. However, the transmit power of the BS is scaled down by 1/M for the time varying Ricean fading channel (where $K{\neq}0$) indicating that the Ricean factor affects the power scaling law and sum rate, and channel aging only leads to a reduction of the sum rate. Second, the EE of the system is analyzed based on the general power consumption model. Both the theoretical analysis and the simulations show that the channel aging could degrade the sum rate and the EE of the system, and it does not affect the power scaling law.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Isosurface Component Tracking and Visualization in Time-Varying Volumetric Data (시변 볼륨 데이터에서의 등위면 콤포넌트 추적 및 시각화)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.225-231
    • /
    • 2009
  • This paper describes a new algorithm to compute and track the deformation of an isosurface component defined in a time-varying volumetric data. Isosurface visualization is one of the most common method for effective visualization of volumetric data. However, most isosurface visualization algorithms have been developed for static volumetric data. As imaging and simulation techniques are developed, large time-varying volumetric data are increasingly generated. Hence, development of time-varying isosurface visualization that utilizes dynamic properties of time-varying data becomes necessary. First, we define temporal correspondence between isosurface components of two consecutive timesteps. Based on the definition, we perform an algorithm that tracks the deformation of an isosurface component that can be selected using the Contour Tree. By repeating this process for entire timesteps, we can effectively visualize the time-varying data by displaying the dynamic deformation of the selected isosurface component.

$H_\infty$ Controller Design for Discrete-time Linear Systems with Time-varying Delays in States using S-procedure (S-procedure를 이용한 상태에 시변 시간지연을 가지는 이산 선형 시스템에 대한 $H_\infty$ 제어기 설계)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • This paper deals with the H$_{\infty}$ control problems for discrete-time linear systems with time-varying delays in states. The existence condition and the design method of the H$_{\infty}$ state feedback controller are given. In this paper, the H$_{\infty}$ control law is assumed to be a memoryless state feedback, and the upper-bound of time-varying delay and S-procedure are used. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Application of joint time-frequency distribution for estimation of time-varying modal damping ratio

  • Bucher, H.;Magluta, C.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.131-147
    • /
    • 2011
  • The logarithmic decrement method has been long used to estimate damping ratios in systems with only one modal component such as linear single degree of freedom (SDOF) mechanical systems. This paper presents an application of a methodology that uses joint time-frequency distribution (JTFD) as input, instead of the raw signal, to systems with several vibration modes. A most important feature of the present approach is that it can be applied to a system with time-varying damping ratio. Initially the precision and robustness of the method is determined using a synthetic model with multiple harmonic components, one of them displaying a time-varying damping ratio, subsequently the results obtained from experiments with a reduced model are presented. A comparison is made between the results obtained with this methodology and those using the classical technique of Least Squares Complex Exponential Method (LSCE) in order to highlight the advantages of the former, such as, good precision, robustness and excellent performance in extreme cases, e.g., when very low frequency components and time varying damping ratio are present.

Developed empirical model for simulation of time-varying frequency in earthquake ground motion

  • Yu, Ruifang;Yuan, Meiqiao;Yu, Yanxiang
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1463-1480
    • /
    • 2015
  • This research aims to develop an empirical model for simulation of time-varying frequency in earthquake ground motion so as to be used easily in engineering applications. Briefly, 10545 recordings of the Next Generation Attenuation (NGA) global database of accelerograms from shallow crustal earthquakes are selected and binned by magnitude, distance and site condition. Then the wavelet spectrum of each acceleration record is calculated by using one-dimensional continuous wavelet transform, and the frequencies corresponding to the maximum values of the wavelet spectrum at a series of sampling time, named predominant frequencies, are extracted to analyze the variation of frequency content of seismic ground motions in time. And the time-variation of the predominant frequencies of 178 magnitude-distance-site bins for different directions are obtained by calculating the mean square root of predominant frequencies within a bin. The exponential trigonometric function is then use to fit the data, which describes the predominant frequency of ground-motion as a function of time with model parameters given in tables for different magnitude, distance, site conditions and direction. Finally, a practical frequency-dependent amplitude envelope function is developed based on the time-varying frequency derived in this paper, which has clear statistical parameters and can emphasize the effect of low-frequency components on later seismic action. The results illustrate that the time-varying predominant frequency can preferably reflect the non-stationarity of the frequency content in earthquake ground motions and that empirical models given in this paper facilitates the simulation of ground motions.

Lp (p ≥ 1) SOLUTIONS OF MULTIDIMENSIONAL BSDES WITH TIME-VARYING QUASI-HÖLDER CONTINUITY GENERATORS IN GENERAL TIME INTERVALS

  • Lishun, Xiao;Shengjun, Fan
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.667-684
    • /
    • 2020
  • The objective of this paper is solving multidimensional backward stochastic differential equations with general time intervals, in Lp (p ≥ 1) sense, where the generator g satisfies a time-varying Osgood condition in y, a time-varying quasi-Hölder continuity condition in z, and its ith component depends on the ith row of z. Our result strengthens some existing works even for the case of finite time intervals.

Bilateral Control with Time Domain Passivity Approach under Time-varying Communication Delay: Resetting Scheme (시간영역 수동성 기법을 이용하여 시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기: 리셋 방법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1124-1129
    • /
    • 2008
  • Recently, two-port time-domain passivity approach was modified for time-varying communication delay. The newly proposed approach could achieve stable teleoperation even under the serious time-varying delay and packet loss communication condition. However, after some operation hour, the accumulated energy difference between the input energy from one port and the output energy at the other port caused unstable behavior until the passivity controller is activated. Resetting scheme is introduced for solving this problem, and stable bilateral teleoperation can be guaranteed without worrying about the accumulated energy difference.

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.