• Title/Summary/Keyword: Time-Frequency analysis

Search Result 4,784, Processing Time 0.034 seconds

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Hong, Jin-Chul;Sun, Kyung-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.266-271
    • /
    • 2005
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the present method, the flexural wave signals measured in a plate were analyzed.

Adaptive Short-time Fourier Transform for Guided-wave Analysis (유도 초음파 신호 분석을 위한 적응 단시간 푸리에 변환)

  • Sun, Kyung-Ho;Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.606-610
    • /
    • 2004
  • Although time-frequency analysis is useful for dispersive wave analysis, conventional methods such as the short-time Fourier transform do not take the dispersion phenomenon into consideration in the tiling of the time-frequency domain. The objective of this paper is to develop an adaptive time-frequency analysis method whose time-frequency tiling is determined with the consideration of signal dispersion characteristics. To achieve the adaptive time-frequency tiling, each of time-frequency atoms is rotated in the time-frequency plane depending on the local wave dispersion. To carry out this adaptive time-frequency transform, dispersion characteristics hidden in a signal are first estimated by an iterative scheme. To examine the effectiveness of the proposed method, the flexural wave signals measured in a plate were analyzed.

  • PDF

An Effect of Sampling Rate to the Time and Frequency Domain Analysis of Pulse Rate Variability (샘플링율이 맥박변이도 시간 및 주파수 영역 분석에 미치는 영향)

  • Yang, Yoon La;Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1247-1251
    • /
    • 2016
  • This study aims to investigate the effect of sampling frequency to the time domain and frequency domain analysis of pulse rate variability (PRV). Typical time domain variables - AVNN, SDNN, SDSD, RMSSD, NN50 count and pNN50 - and frequency domain variables - VLF, LF, HF, LF/HF, Total Power, nLF and nHF - were derived from 7 down-sampled (250 Hz, 100 Hz, 50 Hz, 25 Hz, 20 Hz, 15 Hz, 10 Hz) PRVs and compared with the result of heart rate variability of 10 kHz-sampled electrocardiogram. Result showed that every variable of time domain analysis of PRV was significant at 25 Hz or higher sampling frequency. Also, in frequency domain analysis, every variable of PRV was significant at 15 Hz or higher sampling frequency.

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

Time-frequency analysis of reactor neutron noise under bubble disturbance and control rod vibration

  • Yuan, Baoxin;Guo, Simao;Yang, Wankui;Zhang, Songbao;Zhong, Bin;Wei, Junxia;Ying, Yangjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1088-1099
    • /
    • 2021
  • Time-frequency analysis technique is an effective analysis tool for non-stationary processes. In the field of reactor neutron noise, the time-frequency analysis method has not been thoroughly researched and widely used. This work has studied the time-frequency analysis of the reactor neutron noise experimental signals under bubble disturbance and control rod vibration. First, an experimental platform was established, and it could be employed to reactor neutron noise experiment and data acquisition. Secondly, two types of reactor neutron noise experiments were performed, and valid experimental data was obtained. Finally, time-frequency analysis was conducted on the experimental data, and effective analysis results were obtained in the low-frequency part. Through this work, it can be concluded that the time-frequency analysis technique can effectively investigate the core dynamics behavior and deepen the identification of the unstable core process.

Transient Vibration Analysis of an Agricultural Tractor (농업용 트랙터의 과도 진동 분석)

  • 김용준;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • This paper introduced some advantages of the time-frequency analysis of vibration and investigated, using the time-frequency transform, the characteristics of the transient motion of a tractor seat, which occurred during the tractor traversed over a rectangular obstacle on the flat surface. The characteristics of the short-time courier and wavelet transforms as time-frequency analysis methods were introduced and discussed to figure out which is more suitable to the analysis of the transient motions of agricultural tractors. Using each transform, transient vibration of a tractor seat was analyzed. Results of the analysis showed that the transient vibration of the seat was influenced by the natural frequencies of vertical mode of chassis, pitching mode of engine and pitching mode of cab of the tractor. The time sequence of the natural mode of tractor vibration was also revealed by the time-frequency analysis. The vibration path analysis by the time-frequency transform showed that the vibration energies transmitted from the front mounts to the seat were less than those from the rear mounts. The energy reduction ratios between the cab mounts and seat were also estimated to be about 72∼78%. The front mounts showed larger reduction than the rear mounts. However, the reduction difference between the right and left sides mounts was negligibly small. The short time Fourier transform was found to be a proper method for investigating the transient motions of farm machines and their effects on the ride vibration.

  • PDF

Nondestructive Evaluation by Joint Time-Frequency Analysis of Degraded SUS 316 Steel (열화된 SUS 316강의 시간-주파수 해석에 의한 비파괴평가)

  • Lee, Kun-Chan;Oh, Jeong-Hwan;Nam, Ki-Woo;Lee, Joo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Fourier transform has been one of the most commonly used tools in study of frequency characteristics of signal. However, based on the Fourier transform. it is hard to tell whether a signal's frequency contents evolve in time or not. Recently, to overcome Fourier transform fault. not to represent non-stationary signal, time-frequency analysis methods are developed and those can represent informations of signal's time and frequency at the same time. In this study we analysed ultrasonic signal for degraded SUS 316 with time-frequency analysis method. In particular the methods such as short time Fourier(STFT) and Wigner-Ville distribution(WVD) were used to extract frequency contents and characteristics from ultrasonic signals.

  • PDF

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

Mass estimation using time-frequency analysis (시간-주파수 기법을 이용한 금속파편 질량 추정)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1129-1134
    • /
    • 2006
  • Mass estimation was derived as functions of acceleration magnitude and primary frequency. The conventional method of mass estimation used frequency data directly in the frequency domain. The signals that can be obtained sensor contained noise as well as impact signal. Therefore, how well we can detect the frequency data in noise directly determines the quality of mass estimation. To find exact frequency data, we used time-frequency analysis. The time frequency method are expected to be more useful than the conventional frequency domain analyses for the mass estimation problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the mass estimation in a noisy environment.

  • PDF

Loose-part Mass Estimation Using Time-frequency Analysis (시간-주파수 기법을 이용한 금속파편 질량 추정)

  • Park, Jin-Ho;Yoon, Doo-Byung;Park, Keun-Bae;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.872-878
    • /
    • 2006
  • Mass estimation was derived as functions of acceleration magnitude and primary frequency. The conventional method of mass estimation used frequency data directly in the frequency domain. The signals that can be obtained sensor contained noise as well as impact signal. Therefore, how well we can detect the frequency data in noise directly determines the quality of mass estimation. To find exact frequency data, we used time-frequency analysis. The time-frequency methods are expected to be more useful than the conventional frequency domain analyses for the mass estimation problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the mass estimation in a noisy environment.