• Title/Summary/Keyword: Time-Displacement Curve

Search Result 89, Processing Time 0.024 seconds

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

Prediction of Fracture Resistance Curves for Nuclear Piping Materials (원자력 배관재료의 파괴저항곡선 예측)

  • 장윤석;석창성;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1051-1061
    • /
    • 1995
  • In order perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain (.sigma. - .epsilon.) curves and fracture resistance (J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. The objective of this paper is to develop two methods for J-R curve prediction. In the first method, elastic-plastic finite element analyses for a series of crack length / specimen width ratio were performed. Accordingly the load versus load line displacement (P .delta.) curve corresponding to the fracture strain is obtained and the J-R curve based on the generalized locus method is obtained. In the second method, the correlation between .sigma.-.epsilon. curves and J-R curves was statistically analyzed and an empirical equation to predict the J-R curve from the .sigma.-.epsilon. test result is proposed. A good correlation between the predicted results based on the proposed methods and the experimental ones is obtained.

A numerical study for initial elastic displacement at tunnel side-wall due to configuration of the tunnel excavation (굴착단면 형상에 따른 터널 초기탄성변위의 수치해석적 연구)

  • Kim, Sang-Hwan;Jung, Hyuk-Il;Lee, Min-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Ground reaction curve is very useful information for estimating the installation time of the tunnel support. The ground reaction curve can be estimated by analytical closed form solutions derived in case of circular section and isotropic stress condition. The nature of the ground reaction, however, depends significantly on tunnel configurations. Nevertheless, few purely analytical and experimental studies of this problem due to tunnel configurations appear to have been carried out. Therefore, it is necessary to investigate the influence of tunnel configurations in order to use simply in practical design. This paper describes a numerical study for the intial elastic displacement in the ground reaction curve due to configuration of tunnel excavation. In order to evaluate the applicability of analytical closed form solution in practical design, the parametric studies were carried out by numerical analysis in elastic tunnel behaviour. In the studies, S value, namely configuration factor, defined as the ratio between tunnel height (b) and width (a), varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30 MPa for each S values. The results indicated that the self-supportability of ground is larger in the ground having low S value. It, however, is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It should be necessary to perform the additional numerical analysis.

  • PDF

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Evaluation of Inelastic Displacement Response of Bridge Structures Using Lateral Load Distributions (횡하중 분배방법을 이용한 교량구조물의 비탄성 변위응답 평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.15-22
    • /
    • 2005
  • In order to evaluate seismic performance of multi-degree-of-freedom bridge structure, moderate lateral load distribution methods using the pushover analysis were developed by many researchers. One of important variables to improve an accuracy of pushover analysis is lateral load distribution. In this study, pushover analyses were performed using the five types of lateral load distribution and seismic performances were evaluated by capacity spectrum method (CSM). To verify an accuracy of suggested lateral load distribution, the maximum displacement estimates by the CSM were compared to those by inelastic time history analysis.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyong-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.88-94
    • /
    • 2007
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve-fitted design spectrum.

The Effect of Seepage Forces on the Ground Reaction Curve of Tunnel (침투력이 터널의 지반반응곡선에 미치는 영향)

  • Lee Seok-Won;Jung Jong-Won;Nam Seok-Woo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.87-98
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. The ground reaction curve is defined as the relationship between internal pressure and radial displacement of tunnel wall. Therefore, the ground reaction curve is significantly affected by seepage forces. In this study, the theoretical solutions of ground reaction curves were derived for both the dry condition and the seepage forces. The theoretical solutions derived were validated by numerical analysis. The ground reaction curves with the support characteristic curve were also analyzed in various conditions of groundwater table. Finally, the theoretical solutions of the ground reaction curve derived in this study can be utilized easily to determine the appropriate time of support systems, the stiffness of support system and so forth for the reasonable design.

Curvature Estimation Method of Curve Section Using Relative Displacement Between Body and Bogie of Rolling-stock (철도차량 차체/대차간 상대변위를 이용한 곡선구간 곡률반경 추정 방법)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1479-1485
    • /
    • 2012
  • The development of a technique for the real-time sensing of a curve section is very important for active rolling-stocks in order to improve the curving performance. However, conventional methods using expensive track inspection equipment or various complex sensors are not practicable to be applied to commercial vehicles. Therefore, we have proposed a new method to estimate the curve radius of a curve section. This method uses the relative displacements occurring between the body and the bogie when the rolling-stock is running on a curve. To verify the validity of this method, we conducted a vehicle dynamics simulation and test using a real vehicle on a test line. The results confirmed the validity of the proposed method. We expect that this method will be effectively applied in studies of active rolling-stocks to increase the curving performance using active control technology.