• Title/Summary/Keyword: Time varying elasticity

Search Result 22, Processing Time 0.019 seconds

Analysis of the Korean Copper Price Elasticity using Time-Varying Model (시변 모형을 이용한 국내 구리 가격탄력성 분석)

  • Kangho Kim;Jinsoo Kim
    • Environmental and Resource Economics Review
    • /
    • v.33 no.2
    • /
    • pp.135-157
    • /
    • 2024
  • In this study, we analyzed the changes in copper consumption according to copper price fluctuations and identified the domestic copper price elasticity. A total of 408 time series data from January 1989 to December 2022 were analyzed using the vector autoregressive (VAR) model with net import volume, price, and production index as variables. In addition, to identify changes in the correlation between variables over time, the dynamic relationship between variables was identified using the time-varying vector autoregressive (TV-VAR) model. As a result of the analysis, it was confirmed that the negative price elasticity for copper is -0.1835. In addition, the interquartile range was -0.3130 ~ 0.0886, with no consistent trend over time, but mainly negative elasticity. This study can be used to quantify the expected impact of various policy proposals and changes related to minerals.

Time-Varying Income Elasticity of CO2 emission Using Non-Linear Cointegration (비선형 공적분모형을 이용한 이산화탄소 배출량의 소득탄력성 추정)

  • Lee, Sungro;Kim, Hyo-Sun
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.473-496
    • /
    • 2014
  • This paper intends to test the non-linear relationship between $CO_2$ emissions and income by employing cointegration model of the time-varying income elasticity. We select France, UK, Italy, Japan, US, China, India, Mexico and Korea and use non-parametric time series analysis on each country in order to estimate its own effect of income on $CO_2$ emission. The main results indicate that the $CO_2$ emission-income elasticities vary over time and the income elasticities of the Annex I countries tend to be higher in absolute terms than those of developing countries. In addition, we find that emission-income elasticities decrease for Annex I countries over time, whereas those for developing countries increase.

Impacts of Demand Response from Different Sectors on Generation System Well Being

  • Hassanzadeh, Muhammad Naseh;Fotuhi-Firuzabad, Mahmud;Safdarian, Amir
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1719-1728
    • /
    • 2017
  • Recent concerns about environmental conditions have triggered the growing interest in using green energy resources. These sources of energy, however, bring new challenges mainly due to their uncertainty and intermittency. In order to alleviate the concerns on the penetration of intermittent energy resources, this paper investigates impacts of realizing demand-side potentials. Among different demand-side management programs, this paper considers demand response wherein consumers change their consumption pattern in response to changing prices. The research studies demand response potentials from different load sectors on generation system well-being. Consumers' sensitivity to time-varying prices is captured via self and cross elasticity coefficients. In the calculation of well-being indices, sequential Monte Carlo simulation approach is accompanied with fuzzy logic. Finally, IEEE-RTS is used as the test bed to conduct several simulations and the associated results are thoroughly discussed.

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측)

  • Choi, Yongok;Yang, Hyunjin
    • Environmental and Resource Economics Review
    • /
    • v.28 no.3
    • /
    • pp.437-465
    • /
    • 2019
  • In this study, we propose a new method to forecast long-term energy demand in Korea. Based on Chang et al. (2016), which models the time varying long-run relationship between electricity demand and GDP with a function coefficient panel model, we design several schemes to retain objectivity of the forecasting model. First, we select the bandwidth parameters for the income coefficient based on the out-of-sample forecasting performance. Second, we extend the income coefficient using the functional principal component analysis method. Third, we proposed a method to reflect the elasticity change patterns inherent in Korea. In the empirical analysis part, we forecasts the long-term energy demand in Korea using the proposed method to show that the proposed method generates more stable long term forecasts than the existing methods.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

Vibrations of truncated shallow and deep conical shells with non-uniform thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.29-46
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the natural frequencies of a truncated shallow and deep conical shell with linearly varying thickness along the meridional direction free at its top edge and clamped at its bottom edge. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Strain and kinetic energies of the truncated conical shell with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated. The frequencies from the present 3-D method are compared with those from other 3-D finite element method and 2-D shell theories.

Quality Characteristics of Chalduk according to the Soaking Time of Glutinous Rice in Water (수침 시간을 달리한 찹쌀가루로 제조한 찰떡의 품질 특성)

  • Jung, Eun-Jin;Woo, Kyung-Ja
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.6
    • /
    • pp.677-683
    • /
    • 2006
  • Glutinous rice cake(Chalduk) was made by varying the hours of soaking time of glutinous rice in the water(0, 4, 8, 12, 24 hours). After storage for various periods, the sensory and physical characteristics and the degree of gelatinization were examined in order to determine the effect of glutinous rice soaking period on the quality of Chalduk. The results of the study are summarized as follows. In the sensory test, 8-hour water soaking produced the significantly highest score for salty taste, while 0-hour water soaking had the lowest score. Four-hour water soaking had the significantly highest score for the degree of chewiness. Eight-hour water soaking had the significantly highest score for overall desirability. For the moisture content of Chalduk covered with bean flour, 8-hour water soaking produced the highest moisture content but the difference was not significant. For the degree of gelatinization, 8-hour water soaking had the highest maltose content, which confirmed the suitability of 8-hour water soaking glutinous rice. Eight-hour water soaking had the lowest hardness. With increasing storage period, the hardness sharply increased. Elasticity was higher for the long-period immersed samples than for the non-immersed samples. In conclusion, an 8-hour soaking time for glutinous rice in water was proposed to maximize the Chalduk quality.

  • PDF