• 제목/요약/키워드: Time series forecasting

검색결과 597건 처리시간 0.023초

SSA를 이용한 일 단위 물수요량 단기 예측에 관한 연구 (A Study of Short Term Forecasting of Daily Water Demand Using SSA)

  • 권현한;문영일
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.758-769
    • /
    • 2004
  • The trends and seasonalities of most time series have a large variability. The result of the Singular Spectrum Analysis(SSA) processing is a decomposition of the time series into several components, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, forecasting by the SSA method should be applied to time series governed (may be approximately) by linear recurrent formulae(LRF). This study examined forecasting ability of SSA-LRF model. These methods are applied to daily water demand data. These models indicate that most cases have good ability of forecasting to some extent by considering statistical and visual assessment, in particular forecasting validity shows good results during 15 days.

시계열모델을 이용한 하수처리장 유입수 성상 예측 (Forecast of Influent Characteristics in Wastewater Treatment Plant with Time Series Model)

  • 김병군;문용택;김홍석;김종락
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.701-707
    • /
    • 2007
  • The information on the incoming load to wastewater treatment plants is not often available to apply to evaluate effects of control actions on the field plant. In this study, a time series model was developed to forecast influent flow rate, BOD, COD, SS, TN and TP concentrations using field operating data. The developed time series model could predict 1 day ahead forecasting results accurately. The coefficient of determination between measured data and 1 day ahead forecasting results has a range from 0.8898 to 0.9971. So, the corelation is relatively high. We made forecasting program based on the time series model developed and hope that the program will assist the operators in the stable operation in wastewater treatment plants.

신경망을 이용한 시계열 분석 : M1-Competition Data에 대한 예측성과 분석 (Time Series Analysis Using Neural Networks : Forecasting Performance Analysis with M1-Competition Data)

  • 지원철
    • 지능정보연구
    • /
    • 제1권1호
    • /
    • pp.135-148
    • /
    • 1995
  • Neural Networks have been advocated as an alternative to statistical forecasting methods. However, the empirical evidences are not consistent. In the present experiments, multi-layered perceptron (MLP) are adopted as approximator to the time series generating processes. To prevent the MLP from being overfitted to the given time series, the information obtained from ARMA modeling is used to determine the architecture of MLP. The proposed approach was tested empirically using the subsamples of the 111 time series used in the first Markridakis Competition. The forecasting results were analyzed to find out the factors that affect the performance of MLP. The experimental results show that the proposed approach outperforms ARMA models in terms of fitting and forecasting accuracy. In addition, it is found that the use of deseasonalized data improves the forecasting accuracy of MLP.

  • PDF

시계열 모형을 이용한 주가지수 방향성 예측 (KOSPI directivity forecasting by time series model)

  • 박인찬;권오진;김태윤
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.991-998
    • /
    • 2009
  • 본 논문은 주가지수선물거래 등에서 유용한 역할을 하는 시계열 데이터의 방향성 예측 문제를 다룬다. 여기서 시계열의 방향성 예측이란 시계열 값의 상승 혹은 하락을 예측하는 문제를 뜻한다. 방향성 예측을 위해 본 연구에서는 시계열 요소분해모형과 자기회귀 누적 이동평균 과정 모형을 고려한다. 특히 방향성 예측의 주된 통계량으로서 모형 외 편차와 모형 내 편차를 고려하며 모형 내 편차가 좀 더 유용함을 보인다.

  • PDF

시계열 모형을 이용한 단기 풍력 단지 출력 지역 통합 예측에 관한 연구 (A Study on Centralized Wind Power Forecasting Based on Time Series Models)

  • 위영민;이재희
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.918-922
    • /
    • 2016
  • As the number of wind farms operating has increased, the interest of the central unit commitment and dispatch for wind power has increased as well. Wind power forecast is necessary for effective power system management and operation with high wind power penetrations. This paper presents the centralized wind power forecasting method, which is a forecast to combine all wind farms in the area into one, using time series models. Also, this paper proposes a prediction model modified with wind forecast error compensation. To demonstrate the improvement of wind power forecasting accuracy, the proposed method is compared with persistence model and new reference model which are commonly used as reference in wind power forecasting using Jeju Island data. The results of case studies are presented to show the effectiveness of the proposed wind power forecasting method.

Bayesian 시계열 예측방법에 관한 소고 (Bayesian Method in Forecasting of time Series)

  • 박일근
    • 산업경영시스템학회지
    • /
    • 제7권10호
    • /
    • pp.47-51
    • /
    • 1984
  • In many forecasting problem, there is little or no useful historical information available at the time the initial forecast is required, The propose of this paper is study on Bayesian Method in forecasting. I : Introduction. II : Bayesian estimation. III : Constant Model. IV : General time series Models. V : Conclusion. The Bayesian procedure are then used to revise parameter estimates when time series information is available, in this paper we give a general description of the bayesian approach and demonstrate the methodology with several specific cases.

  • PDF

시계열 모형을 이용한 범죄예측 사례연구 (A Case Study on Crime Prediction using Time Series Models)

  • 주일엽
    • 시큐리티연구
    • /
    • 제30호
    • /
    • pp.139-169
    • /
    • 2012
  • 본 연구는 살인, 강도, 강간, 절도, 폭력 등 주요 범죄를 예측할 수 있는 시계열 모형을 도출하고 이를 이용한 주요 범죄의 발생 전망을 파악하여 범죄 발생에 대한 과학적인 치안정책 수립에 기여하는데 그 목적이 있다. 이와 같은 목적을 달성하기 위하여 2002년부터 2010년까지의 살인, 강도, 강간, 절도, 폭력 등 주요범죄에 대한 월별 발생건수를 IBM PASW(SPSS) 19.0을 사용하여 주요 범죄의 시계열 예측모형을 규명하기 위한 시계열 모형생성(C), 주요 범죄의 시계열 예측모형에 대한 정확도 규명을 위한 시계열 모형생성(C) 및 시계열 순차도표(N)를 실시하였다. 이와 같은 연구목적과 연구방법을 통하여 도출한 연구결과는 다음과 같다. 첫째, 살인, 강도, 강간, 절도, 폭력 등 주요 범죄에 대한 시계열 예측모형은 각각 단순계절, Winters 승법, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0)(0,1,1), 단순계절로 나타났다. 둘째, 살인, 강도, 강간, 절도, 폭력 등 주요 범죄에 대하여 시계열 예측모형을 이용한 주요 범죄에 대한 단기적 발생 전망이 가능한 것으로 나타났다. 이러한 연구결과를 토대로 범죄 발생에 대한 지속적인 시계열 예측모형 제시, 분기별, 연도별 범죄 발생건수를 기초로 하는 중 장기 시계열 예측모형에 대한 관심이 요구된다.

  • PDF

R에서 자동화 예측 함수에 대한 성능 비교 (Performance comparison for automatic forecasting functions in R)

  • 오지우;성병찬
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.645-655
    • /
    • 2022
  • 본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.

풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법 (Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency)

  • 위영민
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

더미변수(Dummy Variable)를 포함하는 다변수 시계열 모델을 이용한 단기부하예측 (Short-Term Load Forecasting Using Multiple Time-Series Model Including Dummy Variables)

  • 이경훈;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권8호
    • /
    • pp.450-456
    • /
    • 2003
  • This paper proposes a multiple time-series model with dummy variables for one-hour ahead load forecasting. We used 11 dummy variables that were classified by day characteristics such as day of the week, holiday, and special holiday. Also, model specification and selection of input variables including dummy variables were made by test statistics such as AIC(Akaike Information Criterion) and t-test statistics of each coefficient. OLS (Ordinary Least Squares) method was used for estimation and forecasting. We found out that model specifications for each hour are not identical usually at 30% of optimal significance level, and dummy variables reduce the forecasting error if they are classified properly. The proposed model has much more accurate estimates in forecasting with less MAPE (Mean Absolute Percentage Error).