• Title/Summary/Keyword: Time predictability

Search Result 219, Processing Time 0.028 seconds

Comparing Separate and Statically-Partitioned Caches for Time-Predictable Multicore Processors

  • Wu, Lan;Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • In this paper, we quantitatively compare two different time-predictable multicore cache architectures, separate and statically-partitioned caches, through extensive simulation. Current research trends primarily focus on partitioned-cache architectures in order to achieve time predictability for hard real-time multicore based systems, and our experiments reveal that separate caches actually lead to much better performance and energy efficiency when compared to statically-partitioned caches, and both of them are adequate for timing analysis for real-time multicore applications.

Real-Time Task Scheduling Algorithm for Automotive Electronic System (자동차 전장용 실시간 태스크 스케줄링 알고리즘)

  • Kwon, Kyu-Ho;Lee, Jung-Wook;Kim, Ki-Seok;Kim, Jae-Young;Kim, Joo-Man
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Due to the increasing amount of electronic control system in a vehicle, the automotive software is increasingly sophisticated and complicated. Therefore it may be faced a time critical problem caused by its complexity. In order to solve such problems, the automotive electronic system can use a real-time scheduling mechanism based on predictability. We first consider the standard specification of the AUTOSAR OS and uC/OS-II such as its scheduling theory with time determinism. In this paper, we propose the scheduling algorithm to be conformable to a conformance class of OSEK/VDX specification. Algorithm analysis shows that our scheduling algorithm outperforms an existing Trampoline OS by intuition.

Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique (다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상)

  • Lee, Seungsoo;Kim, Gayoung;Yoon, Soonjo;An, Hyunuk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.475-482
    • /
    • 2019
  • Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- /long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF's model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF's S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.

A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy (단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구)

  • Seo, Myeong-Yu;Rhee, Jong-Tae
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

A Study on the Calculation and Provision of Accruals-Quality by Big Data Real-Time Predictive Analysis Program

  • Shin, YeounOuk
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.

An Analysis Method for Dynamical System

  • Niu, Yu;d'Auriol, Brian J.;Lee, Youngkoo;Lee, Sungyoung
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.583-584
    • /
    • 2009
  • This paper provides a method to analyze the dynamical system. It considers the fact of realistic delay in dynamical system analysis for the first time. The method uses timeline and state space to emulate the inhibitive coupling nodes evolving procedure in transmission delayed environment. The resultant finite state machine shows the system predictability and hardware implementation feasibility.

Predictability of the f/g time series

  • Cho, Il-Hyun;Kim, Yeon-Han;Cho, Kyung-Seok;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • Large solar flares are associated with various aspects of space weather effects. Numerous attempts have been made to predict when the solar flare will be occurred mainly based on the configuration of the magnetic field of its flaring site. We analyze the time series of f/g which indicates a representative measure of the sunspot complexity to see whether it shows a possibility to be predicted without huge amounts of observation. Two kinds of analysis results are presented. One is from its power spectrum giving that there's no significantly persistent periodicity within a few days. Its de-trended fluctuation shows the Hurst exponent larger than 0.5 implying that the f/g time series has a long-term memory in time scales less than 10 days.

  • PDF

Radial basis function network design for chaotic time series prediction (혼돈 시계열의 예측을 위한 Radial Basis 함수 회로망 설계)

  • 신창용;김택수;최윤호;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.602-611
    • /
    • 1996
  • In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  • PDF

ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL (수치예보모델 초기치로서 GPS 가강수량 영향 분석)

  • Lee, Jae-Won;Cho, Jung-Ho;Baek, Jeong-Ho;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.285-296
    • /
    • 2007
  • The Precipitable Water Vapor (PWV) from GPS with high resolution in terms of time and space might reduce the limitations of the numerical weather prediction (NWP) model for easily variable phenomena, such as precipitation and cloud. We have converted to PWV from Global Positioning System (GPS) data of Korea Astronomy and Space Science Institute (KASI) and Ministry of Maritime Affairs & Fisheries (MOMAF). First of all, we have selected the heavy rainfall case of having a predictability limitation in time and space due to small-scale motion. In order to evaluate the effect for GPS PWV, we have executed the sensitivity experiment with PWV from GPS data over Korean peninsula in the Weather Research & Forecasting 3-Dimensional Variational (WRF-3DVAR). We have also suggested the direction of further research for an improvement of the predictability of NWP model on the basis of this case.

Studies on the Predictability of Heavy Rainfall Using Prognostic Variables in Numerical Model (모델 예측변수들을 이용한 집중호우 예측 가능성에 관한 연구)

  • Jang, Min;Jee, Joon-Beom;Min, Jae-sik;Lee, Yong-Hee;Chung, Jun-Seok;You, Cheol-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.495-508
    • /
    • 2016
  • In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.