• Title/Summary/Keyword: Time Warping

Search Result 296, Processing Time 0.029 seconds

Decoupled Parametric Motion Synthesis Based on Blending (상.하체 분리 매개화를 통한 블렌딩 기반의 모션 합성)

  • Ha, Dong-Wook;Han, Jung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.439-444
    • /
    • 2008
  • The techniques, which locate example motions in abstract parameter space and interpolate them to generate new motion with given parameters, are widely used in real-time animation system for its controllability and efficiency However, as the dimension of parameter space increases for more complex control, the number of example motions for parameterization increases exponentially. This paper proposes a method that uses two different parameter spaces to obtain decoupled control over upper-body and lower-body motion. At each frame time, each parameterized motion space produces a source frame, which satisfies the constraints involving the corresponding body part. Then, the target frame is synthesized by splicing the upper body of one source frame onto the lower body of the other. To generate corresponding source frames to each other, we present a novel scheme for time-warping. This decoupled parameterization alleviates the problems caused by dimensional complexity of the parameter space and provides users with layered control over the character. However, when the examples are parameterized based on their upper body's spatial properties, the parameters of the examples are varied individually with every change of its lower body. To handle this, we provide an approximation technique to change the positions of the examples rapidly in the parameter space.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

A Hardware Implementation of Support Vector Machines for Speaker Verification System (에스 브이 엠을 이용한 화자인증 알고리즘의 하드웨어 구현 연구)

  • 최우용;황병희;이경희;반성범;정용화;정상화
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.175-182
    • /
    • 2004
  • There is a growing interest in speaker verification, which verifies someone by his/her voices. There are many speaker vitrification algorithms such as HMM and DTW. However, it is impossible to apply these algorithms to memory limited applications because of large number of feature vectors to register or verify users. In this paper we introduces a speaker verification system using SVM, which needs a little memory usage and computation time. Also we proposed hardware architecture for SVM. Experiments were conducted with Korean database which consists of four-digit strings. Although the error rate of SVM is slightly higher than that of HMM, SVM required much less computation time and small model size.

Creation of a Voice Recognition-Based English Aided Learning Platform

  • Hui Xu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.491-500
    • /
    • 2024
  • In hopes of resolving the issue of poor quality of information input for teaching spoken English online, the study creates an English teaching assistance model based on a recognition algorithm named dynamic time warping (DTW) and relies on automated voice recognition technology. In hopes of improving the algorithm's efficiency, the study modifies the speech signal's time-domain properties during the pre-processing stage and enhances the algorithm's performance in terms of computational effort and storage space. Finally, a simulation experiment is employed to evaluate the model application's efficacy. The study's revised DTW model, which achieves recognition rates of above 95% for all phonetic symbols and tops the list for cloudy consonant recognition with rates of 98.5%, 98.8%, and 98.7% throughout the three tests, respectively, is demonstrated by the study's findings. The enhanced model for DTW voice recognition also presents higher efficiency and requires less time for training and testing. The DTW model's KS value, which is the highest among the models analyzed in the KS value analysis, is 0.63. Among the comparative models, the model also presents the lowest curve position for both test functions. This shows that the upgraded DTW model features superior voice recognition capabilities, which could significantly improve online English education and lead to better teaching outcomes.

A Novel Query-by-Singing/Humming Method by Estimating Matching Positions Based on Multi-layered Perceptron

  • Pham, Tuyen Danh;Nam, Gi Pyo;Shin, Kwang Yong;Park, Kang Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1657-1670
    • /
    • 2013
  • The increase in the number of music files in smart phone and MP3 player makes it difficult to find the music files which people want. So, Query-by-Singing/Humming (QbSH) systems have been developed to retrieve music from a user's humming or singing without having to know detailed information about the title or singer of song. Most previous researches on QbSH have been conducted using musical instrument digital interface (MIDI) files as reference songs. However, the production of MIDI files is a time-consuming process. In addition, more and more music files are newly published with the development of music market. Consequently, the method of using the more common MPEG-1 audio layer 3 (MP3) files for reference songs is considered as an alternative. However, there is little previous research on QbSH with MP3 files because an MP3 file has a different waveform due to background music and multiple (polyphonic) melodies compared to the humming/singing query. To overcome these problems, we propose a new QbSH method using MP3 files on mobile device. This research is novel in four ways. First, this is the first research on QbSH using MP3 files as reference songs. Second, the start and end positions on the MP3 file to be matched are estimated by using multi-layered perceptron (MLP) prior to performing the matching with humming/singing query file. Third, for more accurate results, four MLPs are used, which produce the start and end positions for dynamic time warping (DTW) matching algorithm, and those for chroma-based DTW algorithm, respectively. Fourth, two matching scores by the DTW and chroma-based DTW algorithms are combined by using PRODUCT rule, through which a higher matching accuracy is obtained. Experimental results with AFA MP3 database show that the accuracy (Top 1 accuracy of 98%, with an MRR of 0.989) of the proposed method is much higher than that of other methods. We also showed the effectiveness of the proposed system on consumer mobile device.

Research on data augmentation algorithm for time series based on deep learning

  • Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1530-1544
    • /
    • 2023
  • Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.

Segmental Analysis of Curved Non-Prismatic Prestressed Concrete Box Girder Bridges (시공단계를 고려환 곡선변단면 프리스트레스트 콘크리트 박스거더교량의 해석)

  • Park, Chan Min;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 1994
  • A method is presented for the analysis of curved segmentally erected prestressed concrete box girder bridges including time-dependent effects due to load history, temperature history, creep, shrinkage, aging of concrete and relaxation of prestressing steel. The segments can be either precast or cast-in-place. Thin-walled beam theory and finite element method are combined to develop a curved nonprismatic thin-walled box beam element. The element consists of three nodes and each node has eight displacement degrees of freedom, including transverse distortion and longitudinal warping of the cross section.

  • PDF

Implementation of Sound Recognition for Security Camera (보안카메라에서 소리인식 구현)

  • Yun, Tae-In;Ku, Ha-Neul;Kim, Do-Eun;Jang, Won-Serk;Kwon, Soon-Kak;Kwon, Oh-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.491-493
    • /
    • 2012
  • 소리인식이란 우리 귀에 들리는 모든 소리를 받아 들여 소리의 값과 저장되어 있는 데이터의 값을 비교하여 인식 결과를 도출해내는 과정을 의미한다. 보안 카메라는 현재 다양한 장소에서 설치되어 있어도 여전히 보안의 사각지대는 존재하며, 이를 보완하기 위해서는 여러 방향을 촬영하기 위한 아주 많은 보완 카메라가 설치될 수 밖에 없다. 그렇게 되면 설치비용이 더욱 증가되고, 무수한 카메라는 사람들에게 심적 부담감을 줄 것이다. 본 논문은 보안 카메라에 마이크를 설치하고, 입력되는 소리를 인식하여 발생되는 상황을 판단하는 시스템을 설계하고 구현하기 위한 것이다. 이를 바탕으로 보안 카메라의 사각지대를 소리인식으로 해결할 수 있어서 보완 카메라의 설치 비용을 줄일 수 있다.

  • PDF

Implementation of Speaker Verification Security System Using DSP Processor(TMS320C32) (DSP Processor(TMS320C32)를 이용한 화자인증 보안시스템의 구현)

  • Haam, Young-Jun;Kwon, Hyuk-Jae;Choi, Soo-Young;Jeong, lk-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.107-116
    • /
    • 2001
  • The speech includes various kinds of information : language information, speaker's information, affectivity, hygienic condition, utterance environment etc. when a person communicates with others. All technologies to utilize in real life processing this speech are called the speech technology. The speech technology contains speaker's information that among them and it includes a speech which is known as a speaker recognition. DTW(Dynamic Time Warping) is the speaker recognition technology that seeks the pattern of standard speech signal and the similarity degree in an inputted speech signal using dynamic programming. ln this study, using TMS320C32 DSP processor, we are to embody this DTW and to construct a security system.

  • PDF

Study on the pronunciation correction in English Learning (영어 학습 시의 발성 교정 기술에 관한 연구)

  • Kim Jae-Min;Beack Seung-Kwon;Hahn Minsoo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.119-122
    • /
    • 2000
  • In this paper, we implement an elementary system to correct accent, pronunciation, and intonation in English spoken by non-native English speakers. In case of the accent evaluation, energy and pitch information are used to find stressed syllables, and then we extract the segment information of input patterns using a dynamic time warping method to discriminate and evaluate accent position. For the pronunciation evaluation. we utilize the segment information using the same algorithm as in accent evaluation and calculate the spectral distance measure for each phoneme between input and reference. For the intonation evaluation. we propose nine pattern of slope to estimate pitch contour, then we grade test sentences by accumulated error obtained by the distance measure and estimated slope. Our result shows that 98 percent of accent and 71 percent of pronunciation evaluation agree with perceptual measure. As the result of the intonation evaluation. system represent the similar order of grade for the four sentences having different intonation patterns compared with perceptual evaluation.

  • PDF