• Title/Summary/Keyword: Time Stepping Method

Search Result 165, Processing Time 0.022 seconds

Aerodynamic Analysis of an Arbitrary Three-Dimensional Blended Wing Body Aircraft using Panel Method (패널법을 이용한 임의의 3차원 BWB 형상 항공기에 대한 공력해석)

  • Lee, Sea-Wook;Yang, Jin-Yeol;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1066-1072
    • /
    • 2009
  • A panel method based on potential flow theory is developed for the steady/unsteady aerodynamic analysis of arbitrary three-dimensional Blended Wing Body aircraft. The panel method uses the piecewise constant source and doublet singularities as a solution. This potential based panel method is founded on the Dirichlet boundary condition and coupled with the time-stepping method. The present method uses the time-stepping loop to simulate the unsteady motion of the aircraft. The present method can solve the three-dimensional flow over the complex bodies with less computing time and provide various aerodynamic derivatives to secure the stability of Blended Wing Body aircraft. That will do much for practical applications such as aerodynamic designs and analysis of aircraft configurations and flight simulation.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

The analysis of induction motor drived by PWM voltage source inverter (PWM 인버터 전압원 구동에 의한 유도전동기해석)

  • Kim, Do-Wan;Gwak, In-Gu;Lee, Hyang-Beom;Park, Il-Han;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.71-73
    • /
    • 1995
  • For the accurate analysis of induction motors driven by PWM-type inverter, a time-stepping finite element method is presented in this paper. Since the PWM-type source voltage is not sinusoidal, the time harmonic method can not be used. Therefore, we used a time-stepping method, where the space harmonics due to the slot structure can be analyzed and each time-step size is determined from each increase of rotor position. As a numerical example, an induction motor of 20 Hp, 3 phase and 6 pole is analyzed. First, numerical results of the time-stepping finite element analysis are compared to those of conventional equivated circuit analysts. Next, the stator current characteristic obtained from PWM voltage source is compared to that from sinusoidal voltage source.

  • PDF

The Study on the design of Claw Pole Stepping Motor considering Axial flux (축 방향 자속을 고려한 Claw pole 스테핑 모터 설계에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.28-34
    • /
    • 2014
  • A claw pole stepping motor is widely used in various fields such as a compact optical disk drive, computer peripherals, digital cameras, office automation(OA), handheld mobile devices, because it has the suitable structure for compact motor. However 3D analysis is essential for design of Claw pole stepping motor because of axial flux path. Thus, in general, it takes a lot of time in the design of Claw pole motor. In this paper, magnetic equivalent circuit considering axial flux was proposed to reduce design time of Claw pole motor and we has designed by using the magnetic equivalent circuit. In addition, in oder to verify the study, design model was verified by 3D FEM simulation and experiment.

Preconditioned Multistage time stepping for the Multigrid Navier-Stokes Solver (다중 격자 Navier-Stokes 해석을 위한 예조건화된 다단계 시간 전진 기법)

  • Kim Yoonsik;Kwon Jang Hyuk;Choi Yun Ho;Lee Seungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.59-64
    • /
    • 2002
  • In this paper, the preconditioned multistage time stepping methods which are popular multigrid smoothers is implemented for the compressible Navier-Stokes calculation with full-coarsening multigrid method. The convergence characteristic of the point-Jacobi and Alternating direction line Jacobi(DDADI) preconditioners are studied. The performance of 2nd order upwind numerical fluxes such as 2nd order upwind TVD scheme and MUSCL-type linear reconstruction scheme are compared in the inviscid and viscous turbulent flow caculations.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.

Numerical Analysis of Viscous Flow on the Periodic Oscillating Flat Plate using Unsteady CFD Code (비정상 CFD 코드를 이용한 주기성 하모닉 진동 평판 위의 점성유동 수치해석)

  • Lee, Eunseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1000-1002
    • /
    • 2017
  • Here, the unsteady Navier-Stokes solver has been developed using implicit dual time stepping method. The implicit dual time stepping method introduced the pseudo time step for solving the new residual including the steady state residual and real time derivative. For the validation of code, Stokes 2nd problem, the laminar flow on the oscillating flat plate was selected and compare the calculating results with analytic solutions. The calculating velocity profile and skin friction has a good agreement with analytic solutions.

  • PDF

Calculation of Iron Losses in Inverter-fed Induction Motors based on Time-stepping FEM

  • Wang, Hai-Rong;Wu, Jian-Hua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.283-287
    • /
    • 2013
  • This paper presents a method for calculating iron losses in three-phase induction motors under the inverter supply through the field-circuit coupled time-stepping finite element method (FEM). Iron losses are calculated by using the three-term iron losses separated model and modifying the loss coefficients obtained by the iron losses curves which are provided by the manufacturer under the sinusoidal supply. Simulation results by the presented method are verified by the measured results with an error lower than 5%, confirming the validity of the proposed method. Finally, iron losses distribution of the inverter-fed three-phase induction prototype motor is shown.

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.