• Title/Summary/Keyword: Time Simulation

Search Result 16,132, Processing Time 0.039 seconds

The Performance Evaluation and The Layout Improvement of the Engine Manufacturing Line Using Simulation (시뮬레이션을 사용한 엔진생산라인의 성능평가 및 설계개선)

  • 오필범
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.224-228
    • /
    • 1999
  • When we construct a manufacturing plant, optimal design is very important. This paper is to simulate an engine manufacturing flow line for commercial vehicle. The parameters we consider in simulation include facility downtime, tool change time, buffer size between consecutive stations, and time to repair the facility. We use AutoMod to compare the alternatives. The objective is to minimize the total cost. Simulation results provide significant cost saving by improving the current design and policy.

  • PDF

Event-Driven Real-Time Simulation Based On The RM Scheduling and Lock-free Shared Objects

  • Park, Hyun Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.199-214
    • /
    • 1999
  • The Constructive Battle Simulation Model is very important to the recent military training for the substitution of the field training. However, real battlefield systems operate under real-time conditions, they are inherently distributed, concurrent and dynamic. In order to reflect these properties by the computer-based simulation systems which represent real world processes, we have been developing constructive simulation model for several years. Conventionally, scheduling and resource allocation activities which have timing constraints, we elaborated on these issues and developed the simulation system on commercially available hardware and operating system with lock-free resource allocation scheme and rate monotonic scheduling.

  • PDF

Implicit Numerical Algorithm for Real-time simulation of a Vehicle (차량 실시간 시뮬레이션을 위한 암시적 수치 알고리즘)

  • 박민영;이정근;송창섭;배대성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.143-153
    • /
    • 1998
  • In this reaserch, a program for real time simulation of a vehicle is developed. This program uses relative coordinates to save the computation time and BDF(Backward Difference Formula) to integrate system variables. Numerical tests were performed for J-turn and Lane change steering, respectively. The validity of the program is proved by the ADAMS package. Numerical results showed that the proposed implicit method is more stable in carrying out the numerical integration for vehicle dynamics than the explicit method. Hardware requirements for real time simulation are suggested.

  • PDF

An Efficient Brownian Motion Simulation Method for the Conductivity of a Digitized Composite Medium

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.545-561
    • /
    • 2003
  • We use the first-passage-time formulation by Torquato, Kim and Cule [J. Appl. Phys., Vol. 85, pp. 1560∼1571 (1999) ], which makes use of the first-passage region in association with the diffusion tracer's Brownian movement, and develop a new efficient Brownian motion simulation method to compute the effective conductivity of digitized composite media. By using the new method, one can remarkably enhance the speed of the Brownian walkers sampling the medium and thus reduce the computation time. In the new method, we specifically choose the first-passage regions such that they coincide with two, four, or eight digitizing units according to the dimensionality of the composite medium and the local configurations around the Brownian walkers. We first obtain explicit solutions for the relevant first-passage-time equations in two-and three-dimensions. We then apply the new method to solve the illustrative benchmark problem of estimating the effective conductivities of the checkerboard-shaped composite media. for both periodic and random configurations. Simulation results show that the new method can reduce the computation time about by an order of magnitude.

Production of Automobile Al Wheel by Low-Pressure Die Casting (I) : Flow and Solidification Simulation (저압주조에 의한 자동차 Al Wheel의 제조(I) : 유동 및 응고해석)

  • Choo, In-Ho;Yu, Sung-Kon;Choi, Jeong-Kil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.578-585
    • /
    • 1998
  • A multi-purpose code MAGMA was employed for mold design and process control in producing Al wheel by lowpressure die casting. Three-dimensional solid modeling was followed by mesh generation of casting and molds(top, bottom and side). The simulation of stability of casting cycle time, mold filling simulation with pressure variation from P1 to P2, solidification simulation by solidification time and feeding criteria, and temperature distribution of molds during processes were studied in this research. The thermal stability of molds was attained after 5 cycles when molds were preheated at $400^{\circ}C$. The pressure increase from P1 to P2 for mold filling was evaluated as slightly higher, and 6 seconds were taken for the mold filling. The cycle time was believed to be designed properly judged from the solidification time of casting and open/close time of molds.

  • PDF

TIME-DOMAIN TECHNIQUE FOR FRONT-END NOISE SIMULATION IN NUCLEAR SPECTROSCOPY

  • Neamintara, Hudsaleark;Mangclaviraj, Virul;Punnachaiya, Suvit
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.717-724
    • /
    • 2007
  • A measurement-based time-domain noise simulation of radiation detector-preamplifier (front-end) noise in nuclear spectroscopy is described. The time-domain noise simulation was performed by generating "noise random numbers" using Monte Carlo's inverse method. The probability of unpredictable noise was derived from the empirical cumulative distribution function via the sampled noise, which was measured from a preamplifier output. Results of the simulated noise were investigated as functions of time, frequency, and statistical domains. Noise behavior was evaluated using the signal wave-shaping function, and was compared with the actual noise. Similarities between the response characteristics of the simulated and the actual preamplifier output noises were found. The simulated noise and the computed nuclear pulse signal were also combined to generate a simulated preamplifier output signal. Such simulated output signals could be used in nuclear spectroscopy to determine energy resolution degradation from front-end noise effect.

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

Power System Stability Analysis Using a Hybrid Approach (하이브리드 방법을 이용한 전력계통 안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.21-25
    • /
    • 2010
  • This paper explains hybrid method that combines Time domain simulation technique with the direct method of Transient stability analysis. First, it calculate trajectory of real system by Time domain Simulation using OOP(Object Oriented Programming method) and evaluate Transient Energy Function to induce stability index to calculate Transient stability margin. Once the status of system(stable or unstable) has been identified, proper criteria are proposed to stop time-domain simulation to reduce CPU time.

A Performance Evaluation of Fully Asynchronous Disk Array Using Simulation Method (시뮬레이션 기법을 이용한 완전 비동기 디스크 어레이 성능 평가)

  • 오유영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.29-43
    • /
    • 1999
  • As real-time processing of data with large storage space is required in the era of multimedia, disk arrays are generally used as storage subsystems which be able to provide improved I/O performance. To design the cost-effective disk array, it is important to develop performance models which evaluate the disk array performance. Both queueing theory and simulation are applicable as the method of performance evaluation through queueing modeling. But there is a limit to the analytical method using queueing theory due to the characteristics of disk array requests being serviced in the parallel and concurrent manner. So in this paper we evaluate the disk array performance using simulation method which abstract disk array systems in the low level. Performance results were evaluated through simulation, so that mean response time, mean queueing delay, mean service time, mean queue length for disk array requests and utilization, throughput for disk array systems, can be utilized for capacity planning in the phase of disk array design.

  • PDF

Enabling role of hybrid simulation across NEES in advancing earthquake engineering

  • Gomez, Daniel;Dyke, Shirley J.;Maghareh, Amin
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.913-929
    • /
    • 2015
  • Hybrid simulation is increasingly being recognized as a powerful technique for laboratory testing. It offers the opportunity for global system evaluation of civil infrastructure systems subject to extreme dynamic loading, often with a significant reduction in time and cost. In this approach, a reference structure/system is partitioned into two or more substructures. The portion of the structural system designated as 'physical' or 'experimental' is tested in the laboratory, while other portions are replaced with a computational model. Many researchers have quite effectively used hybrid simulation (HS) and real-time hybrid simulation (RTHS) methods for examination and verification of existing and new design concepts and proposed structural systems or devices. This paper provides a detailed perspective of the enabling role that HS and RTHS methods have played in advancing the practice of earthquake engineering. Herein, our focus is on investigations related to earthquake engineering, those with CURATED data available in their entirety in the NEES Data Repository.